
Selectively De-animating and Stabilizing Videos

Jiamin Bai

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-213
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-213.html

December 11, 2014

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
11 DEC 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
Selectively De-animating and Stabilizing Videos

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Electrical Engineering and
Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This thesis presents three systems for editing the motion of videos. First, selectively deanimating videos
seeks to remove the large-scale motions of one or more objects so that other motions are easier to see. The
user draws strokes to indicate the regions that should be immobilized, and our algorithm warps the video
to remove large-scale motion in regions while leaving ner-scale, relative motions intact. We then use a
graph-cut-based optimization to composite the warped video with still frames from the input video to
remove unwanted background motion. Our technique enables applications such as clearer motion
visualization simpler creation of artistic cinemagraphs, and new ways to edit appearance and motion paths
in video. Second, we design a fully automatic system to create portrait cinemagraphs by tracking facial
features and de-animating the video with respect to the face and torso. We then generate compositing
weights automatically to create the nal cinemagraph portraits. Third, we present a user-assisted video
stabilization algorithm that is able to stabilize challenging videos when state-of-the-art automatic
algorithms fail to generate a satisfactory result. Our system introduces two new modes of interaction that
allow the user to improve an unsatisfactory automatically stabilized video. First, we cluster tracks and
visualize them on the warped video. The user ensures that appropriate tracks are selected by clicking on
track clusters to include or exclude them to guide the stabilization. Second, the user can directly specify
how regions in the output video should look by drawing quadrilaterals to select and deform parts of the
frame. Our algorithm then computes a stabilized video using the user-selected tracks, while respecting the
user-modi ed regions.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

104

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Acknowledgement

This work was supported in part by ONR PECASE grant N00014-09-1-
0741,
NSF grants CCF-0643552, IIS-1016920, an A*STAR NSS PhD fellowship,
gifts and software from Adobe, funding from Nokia, and the Intel Science
and Technology Center for Visual Computing.

Selectively De-animating and Stabilizing Videos

by

Jiamin Bai

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ravi Ramamoorthi, Chair
Professor Maneesh Agarwala

Professor Marty Banks

Fall 2014

Selectively De-animating and Stabilizing Videos

Copyright 2014
by

Jiamin Bai

1

Abstract

Selectively De-animating and Stabilizing Videos

by

Jiamin Bai

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ravi Ramamoorthi, Chair

This thesis presents three systems for editing the motion of videos. First, selectively de-
animating videos seeks to remove the large-scale motions of one or more objects so that
other motions are easier to see. The user draws strokes to indicate the regions that should
be immobilized, and our algorithm warps the video to remove large-scale motion in regions
while leaving finer-scale, relative motions intact. We then use a graph-cut-based optimization
to composite the warped video with still frames from the input video to remove unwanted
background motion. Our technique enables applications such as clearer motion visualization,
simpler creation of artistic cinemagraphs, and new ways to edit appearance and motion paths
in video. Second, we design a fully automatic system to create portrait cinemagraphs by
tracking facial features and de-animating the video with respect to the face and torso. We
then generate compositing weights automatically to create the final cinemagraph portraits.

Third, we present a user-assisted video stabilization algorithm that is able to stabilize
challenging videos when state-of-the-art automatic algorithms fail to generate a satisfactory
result. Our system introduces two new modes of interaction that allow the user to improve
an unsatisfactory automatically stabilized video. First, we cluster tracks and visualize them
on the warped video. The user ensures that appropriate tracks are selected by clicking on
track clusters to include or exclude them to guide the stabilization. Second, the user can
directly specify how regions in the output video should look by drawing quadrilaterals to
select and deform parts of the frame. Our algorithm then computes a stabilized video using
the user-selected tracks, while respecting the user-modified regions.

i

To my Father and Mother.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Visual Media . 1
1.2 Photography . 4
1.3 Video . 6
1.4 Image Editing . 8
1.5 Computational Photography . 9
1.6 Contributions . 10
1.7 Overview . 11

2 Related Work 12
2.1 Overview . 12
2.2 Video Editing . 13
2.3 Video Stabilization . 13
2.4 Motion Visualization . 14
2.5 Compositing . 15
2.6 Motion Clustering . 15

3 Selectively De-animating Videos 16
3.1 Introduction . 16
3.2 User Input . 18
3.3 Overview . 19
3.4 Warping . 19
3.5 Compositing . 22
3.6 Results . 27
3.7 Evaluation . 30
3.8 Limitations . 32

iii

3.9 Conclusion and Future Work . 35

4 Automatic Cinemagraphs 37
4.1 Introduction . 37
4.2 Overview . 38
4.3 Track Selection . 39
4.4 Warping . 44
4.5 Compositing . 45
4.6 Results . 48
4.7 Conclusions and Future Work . 53

5 User-Assisted Video Stabilization 59
5.1 Introduction . 59
5.2 Background . 60
5.3 Improving Track Selection . 62
5.4 Specifying Region Warps . 66
5.5 Results . 70
5.6 Conclusion and Future Work . 74

6 Conclusions and Future Work 80
6.1 Conclusions . 80
6.2 Future Work . 81
6.3 De-animation . 82
6.4 Portrait Cinemagraphs . 82
6.5 Video Stabilization . 83

Bibliography 84

iv

List of Figures

1.1 Various cave paintings from around the world 2
1.2 Examples of religious paintings and commissioned paintings for the wealthy . . . 3
1.3 Modern paintings . 4
1.4 Earliest photography equipment . 5
1.5 Contemporary photography equipment and parts 6
1.6 Sequence of photographs of a galloping horse by Eadweard Muybridge 7
1.7 Examples of photograph editing on film media 8

3.1 De-animating a musician to better visualizer finer-scale motions 17
3.2 System diagram of Selectively De-animating Videos 18
3.3 Graph-cut labeling for compositing . 22
3.4 Example to create seamless temporal looping 23
3.5 User provided strokes for motion visualization 25
3.6 User provided strokes for cinemagraphs . 26
3.7 Image editing result . 28
3.8 Legend of method acronyms used in comparisons. 28
3.9 Motion editing result for roulette . 29
3.10 Average images for stages of our system . 31
3.11 Variances of stabilized appearance and timings 33
3.12 Close up of average images for various stances and other algorithms 34
3.13 Failure case for de-animation . 35
3.14 GMMs for compositing . 36

4.1 System diagram for Automatic Cinemagraph Portraits 39
4.2 Motion analysis for facial feature parts . 40
4.3 Parameters for motion analysis . 41
4.4 Typical motion analysis for a face . 42
4.5 Iterations needed for RANSAC for probability of success 43
4.6 Example of selected tracks and computed energies 44
4.7 Track selection comparison between manual and automatic approaches 50
4.8 Timings for our examples . 51
4.9 Failure cases for portrait cinemagraphs . 52

v

4.10 Examples used (1-4) . 55
4.11 Examples used (5-8) . 56
4.12 Examples used (9-12) . 57
4.13 Examples used (13-15) . 58

5.1 Overview of User-assisted Video Stabilization 61
5.2 Bundled Paths for video stabilization . 62
5.3 Our track clustering approach . 63
5.4 Example of track clustering result . 65
5.5 Parameters used for video stabilization . 69
5.6 Comparison of our clustering method against previous work 71
5.7 Comparison of stabilization quality with user-selected tracks 74
5.8 Propagation of user-specified constraints . 75
5.9 Comparison of stabilization quality with user-specified region constraints 76
5.10 Results for Video 1 . 77
5.11 Results for Video 2 . 77
5.12 Results for Video 3 . 78
5.13 Results for Video 4 . 78
5.14 Results for Video 5 . 79
5.15 Results for Video 6 . 79

vi

List of Tables

5.1 Computation times for video stabilization . 72

vii

Acknowledgments

I want to thank my Advisor Prof. Ravi Ramamoorthi for supporting my various explorations
in different fields in computer graphics and vision. The freedom allowed me to find projects
that I truly enjoyed. Prof Maneesh Agrawala has been a great source of encouragement and
support when projects were progressing well. I want to thank Aseem Agarwala for being
patient and providing insightful suggestions throughout the latter part of my program. I
have been fortunate to work with Dr. Manmohan Chandraker and Dr. Dikpal Reddy as well
as Dr. Milos Hasan and Dr. Huamin Wang who provided great advice on graduate school.

I also want to thank Prof. Brian Barsky for the opportunities he has provided me. Dr
Tian Tsong Ng for providing guidance prior to my graduate school studies in I2R. I was
like to thank Prof. Charlee Brodsky, Prof. Mark Perrott, Prof. Martin Prekop and Prof.
Elizabeth Raymer-Griffin from CMU for nurturing the photographer in me; It is why I do
research in Computational Photography. I would also like to thank Prof. Jean-Paul Bourdier
and Prof. Anthony Dubovsky for welcoming me into their classes. I have learnt so much
from them.

My graduate life has been wonderful due to the great friends and lab mates I have. In
particular, Michael Tao has not only been a collaborator, but also a great friend. Dr. Fu-
Chung Huang, Brandon Wang, Florian Hecht, Dr. Dikpal Reddy and Armin Samii helped
to make working in lab enjoyable and fun. I want to thank James Do, Linda Yu and Max
Zheng for the hours we spend outside of work. I would also like to thank Cecilia Chang for
making my last year in graduate school exciting and showing me a different way to live life.

I would like to thank Sean Arietta for playing the guitar, Kathy Ngo, Sheryl Marie,
Jessy Berry, Christina Russo, Siang Yun Ang and Armin Samii, Dikpal Reddy, Michael Tao,
Brandon Wang, Soham Mehta, Jimmy Andrews, Rahul Narain who agreed to be models.

This work was supported in part by ONR PECASE grant N00014-09-1-0741, NSF grants
CCF-0643552, IIS-1016920, an A*STAR NSS PhD fellowship, gifts and software from Adobe,
funding from Nokia, and the Intel Science and Technology Center for Visual Computing.

1

Chapter 1

Introduction

1.1 Visual Media

Visual perception is one of the primary ways humans gain information and understanding
from the world. Sight gives us the ability to observe and reason about objects or surroundings
at a safe distance almost instantaneously. The ability to see was an important tool for
survival in the early days when our ancestors had to avoid dangerous terrain, hunt animals
and gather food. Today, sight allows us to drive modern scientific progress; we use sight to
observe natural phenomena or complex data visualizations to make discoveries. For example,
Joseph von Fraunhofer observed that there are gaps in the spectrum of visible light when
magnified. This discovery eventually became the core of astronomical spectroscopy. It
allowed scientists to make observations about the composition of stellar objects as different
atoms would absorb different specific wavelengths of light [63].

Visual communication is also an integral part of how humans communicate with each
other. In fact, our visual perception also has an effect on our auditory senses. The McGurk
effect demonstrates an interaction between vision and hearing [80]. In particular, what we
hear can be affected by what we see. For example, when the sound /ba-ba/ is played with the
lip movements of /ga-ga/, the subject often perceives the sound /da-da/ instead. What we
see also plays an important part during face-to-face communication between people, as it has
been estimated that over 65% of communication is done non-verbally [85]. Body-langauge
from facial expression, posture and body control often provide hints on how a person is
feeling or what he is thinking.

Visual communication can also transcend time, as humans have developed ways to record
and replay visual representation of ideas in the form of paintings, photographs and videos.
The earliest examples of such recordings are cave paintings by our ancestors across various
cultures. Rock paintings have been discovered over various cradles of civilization such as
India, South Africa, Spain, France and Sweden. Figure 1.1 shows some examples of cave
painting that are dated from 14000 BC to 550 BC. It seems that we have an innate need to
document our experiences in some visual form to tell stories.

CHAPTER 1. INTRODUCTION 2

(a) (b)

(c) (d)

Figure 1.1: (a) Painting of a Bison at the Cave of Altamira, Spain. (b) Paintings of Aurochs,
horses, and deer at Lascaux Caves, France. (c) Paintings of hands in Santa Cruz, Argentina.
(d) Petroglyphs from Sweden. These caves paintings are found around the world dated
between 14000 BC to 550 BC.

As civilization developed, paintings gained utility as propaganda for imperial and religious
purposes. For example, Michelangelo was commissioned to paint the Sistine Chapel ceiling
with frescoes depicting biblical stories which include the famous painting, ’The Creation
of Adam’. Michelangelo also painted ’The Last Judgement’ from 1535 to 1541 depicting
historic events of the Holy Roman Empire as shown in Figure 1.2(a) on a wall in the Chapel.
Eventually, paintings were adopted by the wealthy for portraits or as a form of art. These
paintings help to shed light on the daily life of the wealthy in China and Rome as shown in
Figure 1.2(c-d).

In contemporary art, visual pieces are used to evoke and elicit response from the viewer.

CHAPTER 1. INTRODUCTION 3

(a) (b)

(c) (d)

Figure 1.2: (a) Photograph taken inside the Sistine Chapel showing ’The Last Judgement’
on the far wall and parts of the ceiling frescoes painted by Michelangelo. (b) ’Adoration of
the Magi’ by Giotto depicts the the Magi worshipping the newborn Jesus. (c) Painting of
life in the Song Dynasty. (d) Roman art from Pompeii

Masters such as Picasso and Gleizes, produced works that are less narrative, but explore new
visual paradigms such as cubism as shown in Figure 1.3(a-b). Modern pieces from Pollock
and Albers further pushes the boundary of art as they explore new visual language such as
lines, chaos and geometry without any connection to material objects in Figure 1.3(e-f).

CHAPTER 1. INTRODUCTION 4

(a) (b) (c)

(d) (e)

Figure 1.3: (a) ’De Chirico’s Love Song’ by Giorgio de Chirico. (b) ’Les Demoiselles
d’Avignon’ by Pablo Picasso. (c) ’L’Homme au Balcon’ by Albert Gleizes. (d) ’Blue Poles’
by Jackson Pollock. (e) Geometric abstraction by Josef Albers.

1.2 Photography

The introduction of modern photography was perhaps the greatest tool for telling visual
stories. For the first time, an individual without any painting skills could create an accurate
depiction of the world in a fraction of the time it takes to paint. The daguerreotype and the
calotype were among the first few techniques which allowed users to record what the human
eyes could see onto an imaging surface. Figure 1.4(a) shows a daguerreotype of the inventor,
Louis Daguerre. The daguerreotype needed large view cameras, exposures which lasted
seconds, and tedious chemical processes to produce an image as shown in Figure 1.4(b). In
fact, each exposure of the daguerreotype produced a positive image that cannot be printed

CHAPTER 1. INTRODUCTION 5

(a) (b) (c)

Figure 1.4: (a) A daguerreotype taken of Louis Daguerre. (b) Cameras used to make da-
guerrotypes. (c) A photographer coating a piece of glass with light sensitive elusion for the
wet collodion process.

again. The wet collodion process was the first method to produce negative images. This
new process replaced daguerreotype rapidly due to several advantages. First, it was cheaper
as a glass plate was used instead of a polished silver plate. Second, exposure times were
much shorter due to a more sensitive emulsion. Third, the development process was safer
as mercury vapor was not needed unlike daguerreotypes. Finally, the wet collodion process
allowed multiple positive photographs to be reproduced from a single capture. Figure 1.4(c)
shows a photographer preparing a glass negative for the wet collodion process.

The development of the cellulose film and the Kodak Brownie in 1900s allowed common
users to take photographs and have their images processed by Kodak. The Brownie popu-
larized low-cost photography and allowed photographs to be taken by non-expert users, as
all photographic processing was sent back to Kodak. The very first Brownie is shown in
Figure 1.5(a). While cellulose film had eliminated the need for large glass plate negatives
and photo development expertise, there were still limitations. First, the user had no idea
how the photographs would look like until after it was developed and printed. Second, all
photographs on the same roll have the same sensitivity and had to be processed in a batch
with the same parameters.

Digital sensors slowly replaced cellulose film as the benefits of digital are immense. Fig-
ure 1.5(b-c) shows an example of 35mm negative film and a modern digital sensor. Digital
sensors allowed instant preview of the image, near zero cost per image, the ability to switch
ISO between shots, and amenability for miniaturization. As a result, almost all consumer
electronic devices today from computers to phones have a digital imaging system. In fact,
majority of the photos taken and shared by consumers are taken with mobile devices with
cameras. With digital photography, new algorithms were needed in place of chemical pro-
cesses to generate the final image.

Color is registered in 3 different layers (Figure 1.5(d)) in film. However, most digital
sensors have a single layer and rely on a bayer mosaic to capture color as shown in Fig-

CHAPTER 1. INTRODUCTION 6

(a) (b) (c)

(d) (e) (f)

Figure 1.5: (a) The first Kodak Brownie camera allowed consumers to take photos without
knowledge on how to develop and print photographs. (b) 35mm film allowed image negatives
to be recorded and multiple positive images to be printed. (c) A modern digital sensor. (d)
Film records color by using multiple layers of light sensitive pigments and filters. (e) A bayer
filter is used on most digital sensors to record in color. The final color image is interpolated
from the samples. (f) An alternative digital sensor where each pixel site senses in 3 colors
by having layered sensors.

ure 1.5(e). However, since each pixel site in the bayer mosaic only captures one color,
interpolation techniques are needed to reconstruct full color at all pixel locations. An alter-
native new sensor technology allows three layers of photosensors to be constructed at each
pixel location such that each layer senses a different color (Figure 1.5(f)). This avoids the
need for color interpolation which results in better color reproduction.

1.3 Video

The ability to accurately record what happens in the world allowed Eadweard Muybridge
to create multiple photographs in quick succession to study the motion of a galloping horse.
The goal of his experiment was to investigate if all four legs of a horse would leave the ground

CHAPTER 1. INTRODUCTION 7

Figure 1.6: Photographs from Eadweard’s setup to capture sequences of a horse galloping.
It is clear from the second top left inset that all four legs of the horse leave the ground while
galloping.

while galloping. The results of his experiment is shown in Figure 1.6. It is clear that a horse
will have all four legs off the ground while galloping. While Eadweard’s experiment required
multiple cameras, inventors like Louis Le Prince subsequently introduced film cameras which
can record motion using a single lens camera.

Since then, digital video recording devices have become commonplace as cellphones, point
and shoot cameras, DSLRs have the capability to shoot high quality videos. This along with
video sharing platforms such as YouTube, Facebook and other social media sites have fueled
the rate consumers are capturing and sharing videos. It has been reported that over 100
hours of video is was uploaded to YouTube every minute in 2013. In fact, online video now
accounts for 50% of all mobile traffic and expects it to increase to 55% of all internet traffic
by 2016. It is evident that video consumption is gaining momentum.

CHAPTER 1. INTRODUCTION 8

(a) (b)

(c) (d) (e)

Figure 1.7: (a) Photograph of Stalin and Nikolai. (b) Notice that Nikolai has been removed
from the picture after Stalin had purged him due to suspicions that he was disloyal. (c-e)
Surreal photographs created by Jerry Uelsmann by printing multiple negatives onto the same
paper without digital manipulation.

1.4 Image Editing

People have been interested in modifying images that they obtain from photography ever
since the early 1900s even with film negatives. In the example shown in Figure 1.7, Stalin
had removed Nikolai Yezhov from a previous photo after Nikolai fell out of his favor because
he suspected Nikolai was being disloyal. Photography manipulation can also be used as a
form of art. Jerry Uelsmann uses multiple negatives and composites them onto a single print
to create surreal images as shown in Figure 1.7(c-e).

With digital photography, image editing and image manipulation have become easier as
researchers develop new tools to synthesize new images from input images. Efros and Leung

CHAPTER 1. INTRODUCTION 9

showed an alternative sampling technique by copying pixels can generate stochastic textures
with greater effect compared to parametric methods [39]. This process can be accelerated
by copying patches instead of pixels [38]. Areas with unwanted content could be removed
and filled-in using a technique called in-painting [20, 35, 19, 34, 57] by copying appropriate
image patches. PatchMatch is a random sampling algorithm to speed up approximate nearest
neighbor search for patch similarity by an order of two [15]. With a large database of images,
large regions of content can be replaced by searching for similar images and copying entire
regions from it to generate a new novel image [53]. Image melding seeks to generate in-
between images which bears properties from two different images by constructing new images
with patches from both images [36]. An alpha matte allows the foreground object to be
extract and composited onto a new background [29, 101, 66] for image compositing. Possion
blending allows image composites to blend seamlessly as gradients are copied instead of
pixel values [86, 105]. Instead of cropping or stretching an image to resize it, techniques
such as seam carving, shift-map editing, and path transform allows images to be retargeted
to a different size while maintaining scene content without distortion [9, 88, 28]. Multiple
images are blended together to form a larger composite to create panoramas with up to 360
degrees field of view [104]. Multiple images can also be composited from different times with
a moving object to convey the motion in a single photograph [102] Researchers have also
used models as a proxy for image editing. By fitting 3D models of bodies, human body
shape can be edited parametrically [58]. Human face can also be edited to change expression
and attractiveness [70]. With a large collection of 3D objects, image editing becomes more
powerful as novel views of objects, its lighting and motion can be generated [61].

1.5 Computational Photography

Computational photography has gained traction in recent years as researchers seek to lever-
age on increased computational power on devices to increase the capabilities of traditional
photographic processes. Computation is added either during, and/or after image capture to
augment photography.

For instance, by adding codes to the aperture, Levin et al. has shown that it is possible
to recover depth with a natural statistics prior [68]. A Lattice-focal lens can also increase the
depth-of-field of captured images by preserving high frequencies in the defocus image such
that a sharp image can be recovered [67]. Coded masks can also be added to projectors to
improve the depth-of-field of the projection [49]. Researchers have also explored coding in
the temporal domain by using a shutter that flutters over time. This allows high frequency
details to be captured in the blur image, therefore producing better deblurring results [91].

Multiple photographs captured at different times with varying parameters can be com-
bined to produce better images that represent the scene. For example, High Dynamic Range
imaging seeks to record the large variation of light intensities by combining multiple pho-
tographs captured at different exposures [37]. Images of a static scene can avoid high sensor
noise and inaccurate color representation by combining information from a high ISO pho-

CHAPTER 1. INTRODUCTION 10

tograph and one that is taken with a flash [87]. Instead of using a visible flash, researchers
have also used infra-red flash to reduce the visible burst of bright light that some subjects
might find undesirable [64].

Researches have also explored ways to capture different modes of light transport. By pro-
jecting complimentary high frequency patterns onto a scene, researchers can separate direct
illumination and global illumination effects [81]. In fact, once the light transport of the scene
is known, each individual bounce of light transport can be separated for diffuse surfaces [10].
By using a very fast pulse of light, researchers can reconstruct and image the propagation of
light through space. [110]. As a consequence, researchers demonstrate that they can image
around occluders by considering the inter-reflections of light [111]. Subsequently, researchers
have developed methods that uses inexpensive time-of-flight sensors or projector and camera
systems to capture light moving through space as well as imaging around occluders [55, 83,
54].

Researchers have also modified low frame rate cameras to capture higher frame rates
using compressive sensing and modulating each pixel independently [94]. High speed video
can also be captured using low frame rate cameras by using an over-complete dictionary and
per-pixel coded exposure [56].

Lightfield imaging is also an emerging field within computational photography. Instead
of capturing the incident light rays falling on the sensor, light field imaging seeks to cap-
ture the incident angle of the rays as well. The additional angular information allows new
applications such as image refocusing, perspective change, and depth reconstruction [69, 82,
106]. Computation is used to simulate a virtual focusing plane from the sampled light rays
to produce a final image. Light field cameras can be constructed by using an large array
of cameras [114], masks at the aperture [109], masks on the sensor [109], lenslets on the
sensor [82], or masks external to the lens [93].

1.6 Contributions

The ideas which drive computational photography are the basis for the Moment Camera [32].
The new generation of cameras not only capture a single slice in time, but a moment which
may span over a duration by using computation in addition to the imaging system. In
general, computation is used to combine and/or select suitable samples of time and space to
produce a media that best represents what the creator experienced during the moment.

The work in this thesis uses computation to remove large-scale motions in videos to
augment the viewing experience. In particular, we present three complete systems that
allow a user to remove unwanted motion from videos to enhance the viewing experience.
The first, is Selectively De-animating Videos [12], where the user has fine control over where
motions in the video should be retained and isolated. Second, we extend the system to
operate automatically for a special class of videos; portraits [11]. Third, we present a video
stabilization algorithm which leverages on user input to remove camera shakes from very
challenging input videos [13].

CHAPTER 1. INTRODUCTION 11

In De-animation, the goal is to remove large-scale motions in the video so that finer-
scale motions become more apparent. This allows the viewer to study finer-scale motions
without the distraction of the large-scale motions. This technique can also be used to create
Cinemagraphs. Cinemagraphs are a new type of visual media that is in-between a still
photograph and a video. It is essentially a still image, with isolated regions with repeating
motions. This helps to bring attention of the viewer to specific areas and it is surreal and
more captivating than a traditional photograph, but not as distracting as a video. We
propose a system that allows a user to removal large-scale motions in videos easily with only
simple user input strokes.

Video stabilization also uses computation to remove large-scale motion. However, the
goal in video stabilization is to compensate for unwanted camera motion in handheld videos.
Handheld videos usually do not have a steady camera path which might result in a shaky
video. Video stabilization seeks to remove motion in the video due to camera motion to mimic
what a steady camera might record. However, traditional video stabilization algorithms do
not leverage on any information other than tracking key points in the video. This might
lead to undesirable results as objects in the result could be distorted. We propose allowing
the user to provide information on how the result video should look like to further improve
the results.

1.7 Overview

The rest of the thesis is organized as follows, after a brief overview of related work in Chapter
2, we will detail our project on Selectively De-animating Video in Chapter 3. The system
requires user input and can be used on a wide variety of input videos. However, if we restrict
the domain to portraits videos, we can design a fully automatic system which is presented
in Chapter 4. In Chapter 5, we present a user assisted video stabilization algorithm which
allows the user to improve video stabilization results by providing additional information.

12

Chapter 2

Related Work

2.1 Overview

The work in this thesis presents three video editing systems which are goal oriented and rely
on user input or vision algorithms to guide the algorithm. In particular, these video editing
systems allow a user to remove unwanted motion from videos to enhance the viewing expe-
rience. The core technologies that we leverage on are image warping and video stabilization
to compensate for camera or object movement. We also use graph-cut compositing to find
seamless transitions for spatial composites as well as temporal looping. Other key areas that
we use include facial feature detection and motion clustering.

The first two systems, Selectively De-animating Video (Chapter 3) and Automatic Cin-
emagraph Portraits (Chapter 4), seeks to remove large scale motions to reveal smaller scale
motion. We use similar approaches from Content-preserving warps [74] for Selectively De-
animating Video and Automatic Cinemagraph Portraits to warp the frames to remove un-
wanted motion. The third system, User-assisted Video Stabilization (Chapter 5), seeks to
incorporate content information and user goals into video stabilization. We use the state-of-
the-art Bundled Paths [77] automatic video stabilization as a baseline and build upon their
work to include the user in the loop.

We use graph-cut compositing to merge dynamic regions in Selectively De-animating
Video and Automatic Cinemagraph Portraits with static stills. We use alpha-expansion [22]
to solve for a cut in a Markov Random Field that minimizes our energy function. The energy
function we use is inspired from Interactive Digital Photomontage [7] and seeks to find seams
along regions that have a similar appearance or along object boundaries.

We are able to automatically generate cinemagraph portraits because we use a robust
facial feature tracker to find key facial features points on the face in the video [96]. These
points allow our algorithm to determine which parts of the face is moving and stabilize
the video using areas of the face that are stationary throughout the video. We also then
composite the moving parts of the face into a still image to generate the final result.

In User-assisted Video Stabilization, we modify existing track clustering techniques such

CHAPTER 2. RELATED WORK 13

that it is parallelizable and works for long sequences. We adopt a non-negative matrix
factorization technique to find basis vectors over small windows to identify tracks with similar
trajectories [26]. This reduces the work the user has to do when she refines the track selection
for video stabilization. In the following subsections, we describe relevant approaches in these
areas.

2.2 Video Editing

Researchers have developed many tools for specific video editing tasks. For example, roto-
scoping tools such as Video SnapCut seeks to extract dynamic objects from a video sequence
for compositing [14]. Editing interview footage can be challenging as a good audio cut might
result in a unsatisfactory video cut as the subject might have awkward video jump cuts.
Hidden transitions can be generated automatically to hide these transitions by finding and
interpolating suitable frames [21]. As instructional videos are getting popular on the web,
researchers have also developed systems to speed up the creation of such videos [27]. Tools
for creating Video Digests for informational videos can greatly reduce the effort required
to produce videos that allow browsing and skimming along with text summaries for video
sections [84]. Our work introduces tools for motion editing in videos.

2.3 Video Stabilization

There are several video stabilization tools available today. For example, a user could stabilize
the video in real-time using gyroscopic information from the camera [60]. She can also use
tools such as Warp Stabilizer from Adobe during post-production [74, 75], or the video
stabilization tool on YouTube after uploading the input video [50, 51].

Video stabilization works by first estimating scene and camera motion and then re-
projecting each frame such that the unwanted camera motions are minimized. RANSAC [42]
is used to automatically select tracks on background regions to stabilize the video. If the
scene is largely planar, novel camera viewpoints can be generated using homographies [52,
46, 50]. For general scenes, a single homography is too restrictive and re-projections using a
grid mesh have better success in stabilizing such videos.

Content-preserving warps [74] reconstruct the 3D scene and plan an optimal camera path.
A grid mesh which preserves the structure of the scene content is used for re-projection.
However, an alternative is to use 2D feature trajectories to guide the re-projection after
applying a low-rank subspace constraint for camera smoothing [75]. Epipolar geometry can
also be exploited to avoid reconstructing the 3D scene to stabilize the video [48]. Motion
in-painting can also be included in video stabilization [79] and parallax can be handled
explicitly [113]. Video stabilization techniques have also been developed for light fields [99]
and for videos with depth information [100]. Bundles of homographies guiding cells in a grid

CHAPTER 2. RELATED WORK 14

mesh achieve state-of-the-art results by optimizing the path of each grid cell while enforcing
spatial coherence [77].

2.4 Motion Visualization

One approach is to depict the motion using a static image [47, 25, 16, 33, 8, 6, 62, 102].
These methods use repetition, blur, spatial offsetting, montage and diagrammatic elements
to represent motion, but because the result is a still, viewers must mentally reconstruct
timing information. Another approach is to create a short video abstract that retains only
the most salient motions. Truong and Venkatesh [108] survey a number of recent techniques
for identifying such salient video segments. Pritch et al. [89] summarize surveillance video by
non-chronologically rearranging spatio-temporal video segments representing salient activity.
While these methods compress the length of a video, they do not emphasize important
motions within the frame.

Motion magnification [73, 115, 112] highlights small spatial motions (e.g. breathing,
deformations) by exaggerating them. Thus, its goal is the opposite of ours, as we focus
on emphasizing the fine-scale motions of an object by removing larger-scale motions. In
fact, motion magnification could be used in conjunction with our approach to further em-
phasize the most important motions. Bennett and McMillan [18] provide tools for creating
time-lapse videos with stroboscopic motion trails to emphasize translational motions. Rubin-
stein et al. [95] remove transient, distracting motions from time-lapse sequences to increase
the comprehensibility of longer-term movements. Our work is directly inspired by the vision
of the Moment Camera [32] as we provide tools for isolating short motions that represent
key moments in a scene.

Web-based instructions for creating simple cinemagraphs ask users to manually create a
single alpha matte around the moving object and composite it with a still background frame.1

Recently, Tompkin et al. [107] presented a more automated technique for creating such simple
cinemagraphs. They focus on stabilizing camera motion in handheld video, masking mov-
ing objects and generating seamless loops. These approaches cannot de-animate large-scale
motions of specific objects while leaving the finer-scale motions intact. Video textures [97,
65, 7, 77] are a well-known approach for seamlessly looping stochastic motions. Like cinema-
graphs, a video texture lies between photography and video, but a video texture does not
suppress distracting motions within the frame. Another approach to creating cinemagraphs
is to start with a still image, manually segment it into objects, and then add motion using
procedural motion templates [30]. In contrast, we focus on creating cinemagraphs from video
by removing the motion of objects, instead of adding motion to an image.

There are now several publicly available tools for creating cinemagraphs that were de-
veloped concurrently with our work, such as Cliplets from Microsoft Research2, and several

1http://fernandojbaez.com/cinemagraph-tutorial
2http://research.microsoft.com/en-us/um/redmond/projects/cliplets/

CHAPTER 2. RELATED WORK 15

iphone apps3.

2.5 Compositing

One way to composite video regions spatially and temporally is using graph-cuts [22, 65, 7].
The energy function when minimized provides a labeling for each pixel to copy pixel sources
from to provide a visually seamless composite between sources. An alternative to graph-
cut-based seamless compositing would be to extract a temporally-varying alpha matte for
the user-selected foreground with video matting techniques [31, 14]. Poisson blending [101]
can be used to further improve compositing seams by copying gradients and integrating. In
our work, we composite both static (single-frame) and video regions; however, our energy
function is significantly different, since we incorporate constraints from user-drawn strokes,
and we can utilize additional information about the location of occluding boundaries.

2.6 Motion Clustering

Multi-frame motion clustering seeks to group tracks with similar behavior over frames. Tech-
niques which are based on subspaces such as agglomerative lossy clustering [90] or sparse
subspace clustering [40] typically require some tracks which span the length of the video se-
quence. Since hand held videos typically do not have long track trajectories due to occlusions
or large motions, these techniques are not robust enough for motion clustering.

Another approach for motion clustering is affinity-based, which measures the pairwise
relationship between track trajectories. Affinities based on spatial distance, and similarity
of translational motion of track trajectories can be used as features for clustering [24]. Affine
motion similarity can also be used as a basis for affinities for clustering [44]. Weights from
non-negative matrix factorization of the trajectory speed and direction give reliable results for
partial track data [26]. However, hand held videos have many short tracks and clustering can
be computationally intensive. We instead use a moving window and non-negative matrix
factorization of the track trajectory’s speed and direction to build an affinity matrix for
clustering, which greatly decreases the computation time.

3http://kinotopic.com, http://cinemagr.am, http://www.icinegraph.com

16

Chapter 3

Selectively De-animating Videos

3.1 Introduction

In this chapter, we present a semi-automated technique for selectively de-animating or re-
moving the large-scale motions of one or more objects.

The large-scale motion of an object can sometimes make it difficult to see its finer-
scale, internal motions, or those of nearby objects. Consider a video of a guitar teacher
demonstrating the finger motions required to play a song. The fine motions of the fingers
on the strings and frets are obscured or visually masked by the larger-scale, gross motions
of the guitar body. The finger positions required to play notes and chords would be much
easier to follow if the guitar were immobilized (Figure 3.1 and video on project webpage).

The user draws a small set of strokes indicating the regions of the objects that should
be immobilized and our algorithm warps the video to remove the gross motion of these
regions while leaving finer-scale, relative motions intact. The warp may, however, propagate
unwanted motions to other regions that should remain still, such as the background. To
eliminate such undesirable motion, we develop a method for compositing the warped video
with still regions taken from frames of the input. The resulting videos highlight fine-scale,
internal motions of one or more objects, as well as relative motions of nearby objects. In the
guitar example (Figure 3.1) we have immobilized the guitar and composited still frames of
the head and body to make it easier for viewers to focus on the finger positions.

Our algorithm facilitates the creation of cinemagraphs [1] which have recently become a
popular form of motion visualization. They are designed to draw the viewer’s attention to
specific objects and motions in a scene. Cinemagraphs lie between the traditional media of
video and photographs; the most important objects remain animated while the surrounding
objects are held still. While some cinemagraphs simply composite a moving object onto a still
frame background, the most effective also eliminate distracting, large-scale motions of the
primary objects so that viewers can focus on the subtle, fine-scale motions. Cinemagraphs
are also designed to loop endlessly like a video texture [97]. Therefore, users can optionally
use our compositing algorithm to also compute a seamless video loop. Well-designed cin-

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 17

Average Input Average De-Animated Result

Figure 3.1: Large-scale motions of the guitar body can make it difficult to follow the finer-
scale motions of the strings and fingers. We visualize the amount of movement by averaging
the frames of the input video (left) and find that the body and fretboard of the guitar, as
well as the strings and fingers are blurred because they move a lot. With our selective de-
animation technique, we remove the large-scale motions of the guitar to make it easier to see
the finer scale motions. Averaging the frames of our de-animated result (right) shows that
the body and fretboard are sharp and therefore immobilized. Note that while the strings and
fingers are sharper than in the visualization of the input video, they remain blurry because
their fine-scale motions are retained in our de-animated result. We encourage the reader to
view the video, to see this comparison in video form.

emagraphs can be surreal and are often unexpectedly engaging. They are now widely seen
in major online newspapers, magazines, advertising and retail websites. Our cinemagraph
examples can be seen in Figure 3.6.

Beyond motion visualization and cinemagraphs, we also demonstrate applications of our
de-animation technique to video editing. First, we show how de-animation facilitates ap-
pearance editing of moving objects in video. The user edits an object after it is immobilized
in a single frame of the de-animated video, and our system propagates these edits back to the
original video (Figure 3.7). Second, we show that it is easier to animate a virtual object that
moves within the frame-of-reference of a larger object. After the animator plans the motion
of the virtual object in the de-animated video, our system adds in the original motions of
the larger, frame-of-reference object (Figure 3.9).

Our main technical contribution is the first semi-automated method for selectively de-
animating video to eliminate the gross motions of a specific object or objects. The two
main steps of our algorithm follow the general approach of previous work, namely content-
preserving warps for video stabilization [74], and graph-cut video compositing [65]. Novel to

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 18

Dynamic Strokes

Static Strokes

De-Animate Strokes

Anchor Tracks
Floating Tracks

User Input

User Input

Tracking Initial Warp Re�ned Warp

Graphcut Labeling Composited Cinemagraph

Warping

Compositing

Figure 3.2: A diagram of our overall system. The algorithm proceeds in two stages, Warping
(Section 3.4) and Compositing (Section 3.5), and utilizes three types of user-drawn strokes
on a single reference frame (left).

our problem domain is the challenge of only stabilizing locally-defined regions which have
been identified by the user in a single frame. Therefore, our energy function for warping is
more complicated, and requires a multi-stage solution method. We also modify the energy
functions used for compositing from those found in previous work to achieve good results for
our problem domain.

3.2 User Input

We designed our de-animation method to give users creative control over the output while
minimizing repetitive effort. Users must specify three types of information using a coarse
set of strokes on a single frame of the input video; (1) which regions of the video should be
de-animated so that their large-scale motions are eliminated (Figure 3.2, green strokes), (2)
which regions of the video should be held static (red strokes) and (3) which should remain
dynamic (blue strokes). Note that we use the terms de-animated and static to refer to two
different type of output regions in the output video. De-animated regions have been warped
to remove large-scale motions, and may be either static (e.g., completely still) or dynamic
(e.g., moving) in the final output. For example, in Figure 3.1, the large-scale motions of the
guitar are de-animated, but its fine-scale internal motions, such as the motions of its strings,
remain dynamic. The teacher’s arms should also remain fully dynamic and the large-scale

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 19

motions are not removed. Other regions, like the head, are completely static in the final
video.

To make the task easier for our algorithm, we ask the user to draw green de-animate
strokes on only the most static regions of the object, avoiding any internal motions that
should be preserved (Figures 3.2, 3.5 and 3.6). Blue strokes indicate output regions that
should remain dynamic, while red strokes indicate those that should be completely static.
Finally, the user can specify whether the final output should loop seamlessly, and a minimum
duration for the loop. Such looping is commonly used to create cinemagraphs.

3.3 Overview

As shown in Figure 3.2, our algorithm has two main stages; warping (Section 3.4) and
compositing (Section 3.5). The warping stage first tracks feature points through the input
video. It uses a subset of the tracks to compute an initial warp and then refines the warp with
additional tracks. The compositing stage combines the warped video with static frames of
the unwarped video to eliminate undesirable motions in regions that the user specifies should
remain still (red strokes) while preserving motions in regions that should remain dynamic
(blue strokes). The result is a de-animated video, in which the large-scale motion of one or
more objects have been removed, and parts of the video are completely static.

Our approach relies on a few assumptions about the input video. First, we avoid the
issue of camera stabilization by assuming the input was captured with a tripod, or previ-
ously stabilized. Second,we assume the large-scale motions can be de-animated with 2D
warps of the video frames and that complex 3D analysis to reverse self-occlusions is not
necessary. Third, we assume the objects to be de-animated are shot in front of a defocused,
uniform, or uniformly-textured background. As we will show, this assumption allows our
algorithms to de-animate objects without building accurate alpha mattes for them. Despite
these assumptions we have found that we can apply our technique to a large class of videos.

3.4 Warping

Our algorithm begins by tracking a set of points throughout the sequence. We use Kanade-
Lucas-Tomasi (KLT) tracking [78, 98] to follow distinctive points in the input video I(x, y, t).
Tracks may begin or end at any frame, and most tracks do not last throughout the entire
video. We define the set of tracks as a table of 2D coordinates K(s, t), where s is a unique
index for each track, and t indicates time (frame number); K(s, t) = ∅ if track s is not
present on frame t. Since very short tracks are often unreliable, we remove tracks whose
duration is less than 15% of the input video duration.

The user draws green strokes on reference frame ta of the input video. The goal of our
warping algorithm is to warp the video so that the content indicated by the green de-animate
strokes remains spatially fixed to that location for all frames of the output video. We define

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 20

K ′(s, t) as the location of the tracks after warping, and KG(s, t) as the subset of the tracks
that lie on the indicated content. Similarly, K ′G(s, t) are the locations of these tracks after
warping. The goal of our warp can be expressed mathematically as,

K ′G(s, t) = KG(s, ta). (3.1)

Anchor Tracks

De-animate Strokes

Floating Tracks

How do we identify the tracks KG? For tracks that exist
on the reference frame ta, (K(s, ta) 6= ∅), we simply
check if they lie within the green strokes. We call these
anchor tracks, and collect them into the subset KA(s, t)
(see inset). The task is more complicated for tracks that
do not exist on frame ta, but still lie on the content
marked in green. We call these floating tracks, or KF (s, t), so that KG = KA ∪KF . If we
knew how to warp the video to immobilize this content then we could simply check for tracks
that fall in the same green strokes across the entire video to identify floating tracks.

Since we don’t know the warp a priori, our approach is to compute two consecutive warps.
The initial, approximate warp uses only the anchor tracks, i.e., the constraint K ′A(s, t) =
KA(s, ta). If enough anchor tracks exist throughout the entire input video, this initial warp
can successfully immobilize the content indicated by green strokes. It is more common,
however, for the anchor tracks to last a shorter duration. We therefore use the initial warp
to identify additional floating tracks (e.g. the set of tracks that lie in the green strokes after
the initial warp) and then compute a more accurate, refined warp using both sets of tracks.

Initial Warp

Given just the anchor tracks KA(s, t), our goal is to warp the video so that K ′A(s, t) =
KA(s, ta). One approach is to simply fit a full-frame warp like a homography to each frame
that minimizes the squared sum of errors of this constraint. This approach can work well for
some scenes, but others, which are less rigid and planar, require a more flexible representation
(Figure 3.10). We therefore use a spatially-varying warp defined on a rectilinear mesh placed
on each video frame, similar to the approach of Liu et al. [74]. However, in their case the
main warping constraint is given by the output of a 3D reconstruction, while in our case,
the goal is to warp each output frame so that the anchors align with the reference frame.

More specifically, we create a 64 × 32 rectilinear grid mesh on each input frame, with
vertices V (i, j, t) and use it to compute an output mesh V ′(i, j, t). We can express each
track K(s, t) as a bilinear combination of the four vertices of the quad enclosing the track on
frame t. We define V(s, t) as the vector of these four vertices; V′(s, t) represents the same
four vertices on the output grid. The vector w(s, t) contains the four bilinear interpolation
weights that sum to 1, so that K(s, t) = w(s, t) ·V(s, t) on the input mesh, and K ′(s, t) =
w(s, t) ·V′(s, t) on the output mesh we are solving for. The main constraint (Eqn. 3.1) of
the initial warp then becomes

Ea =
∑
s∈KA,t

l(s, t)|KA(s, ta)−w(s, t) ·V′(s, t)|2, (3.2)

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 21

where the unknowns are the output mesh vertices contained in V′. We use the weighting
function l(s, t) of Liu et al. [74], to temporally fade-in and fade-out the strength of the
constraints from each track to preserve temporal coherence. (The weights vary from 0 to 1
with a linear ramp window of 15 frames for fading-in and fading-out when the track points
appear and disappear).

We include an additional term Es on the warp to reduce visible distortion by encouraging
each quad to undergo a similarity transform. We use the formulation given by Liu et al. [74].
We compute the shape term used in Eqn. 3.5 by first splitting the input quad mesh into a
set of triangles. Since each quad in the input mesh is a square, each triangle is an isosceles
right triangle. Considering a single triangle with vertices (V1, V2, V3), if V2 is opposite the
hypotenuse, we can construct vertex V1 from the other two vertices,

V1 = V2 +R90(V3 − V2), R90 =

[
0 1
−1 0

]
. (3.3)

If this triangle undergoes a similarity transform, its vertices after the transform will still
follow this equation, and we can measure the deviation of a transformed triangle from a
similarity transform by the error in this equation. We can therefore write

Es =
1

8

∑
triangles

||V ′1 − (V ′2 +R90(V ′3 − V ′2)||2, (3.4)

where the sum ranges over each of the eight triangles containing each vertex. Using all eight
triangles is redundant, but avoids special handling at the mesh boundaries.

The final energy function is
E = Ea + ωEs. (3.5)

We set the weight ω = 4 through trial-and-error. Since the energy function is a sum of
quadratic terms, we minimize it with respect to V ′ using least squares to solve for the
output grid mesh. Finally, we render the output sequence by texture mapping the input
frames onto the output grid mesh.

Refined Warp

To further improve the result we use floating tracks. We first eliminate floating tracks that
fall outside the green strokes. We use the output of the initial warp, which approximately
aligns each video frame with the reference frame ta, and include a warped floating track
K ′F (s, t) only if it falls within the green strokes (since the track may vary with time, we
require it to lie within the strokes for at least 75% of its duration).

We cannot use the constraint in Eqn. 3.2 for floating tracks, since we do not know their
locations KF (s, ta) in the reference frame. Instead, we constrain the floating tracks to remain
fixed in space over time

Ef =
∑
s∈KF ,t

l(s, t)|w(s, t) ·V′(s, t)−w(s, t+1) ·V′(s, t+1)|2. (3.6)

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 22

Compositing Strokes

Wj

Wi

Ib

Figure 3.3: The computed labeling for three frames of a cinemagraph. In this example,
graph cut chooses a single still frame label (gray) for the background and static regions of
the model, and two dynamic candidates (purple and orange) for the hair and eyes.

Since this constraint includes unknown mesh vertices at different moments of time, we cannot
solve for each frame’s output mesh separately, as in Eqn. 3.5 and in Liu et al. [74]. We
therefore solve for the entire output video mesh simultaneously using least squares. The
final energy function we minimize to compute the refined warp is

E = Ea + Ef + ωEs. (3.7)

3.5 Compositing

The final step is to composite the warped video with static regions taken from a few frames
of the input video, in order to remove any extraneous motions outside the immobilized video
regions.

We use graph cuts to perform Markov Random Field (MRF) optimization, to seamlessly
composite dynamic regions from the warped video with static regions from input frames into
a single output video. This stage of the algorithm takes as input the original video I(x, y, t)
and the warped video W (x, y, t), and produces a final output video O(x, y, t).

Each pixel p of the output video volume O(x, y, t) is assigned a discrete label λ(p) that
respects a set of labeling constraints and minimizes an energy function. Each candidate label
λ corresponds to a pixel source, which we refer to as a candidate video volume. An example of
a candidate video volume is the warped video. The labeling constraints apply to pixels that
are indicated by user-drawn red and blue strokes. The energy function measures the degree
to which a transition between candidate videos is visually noticeable. The resulting labeling
therefore produces an output video that respects the user-drawn strokes, and consists of
regions of the candidate videos with seamless, spatio-temporal transitions between them
(Figure 3.3).

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 23

a)

label = Wi label = W j

t i t j

W

W

Transitional Bu�er

b)

Figure 3.4: We select two candidate video volumes, Wi and Wj (a), and overlap them in the
output to form a seamless loop (b). Transition regions (purple and orange) surround frames
ti and tj (red), and Wj is time-shifted to overlap with Wi in the output, so the first and last
frames of the loop come from consecutive input frames.

If the user specifies that the output should loop seamlessly, we first follow the approach
of Schodl et al. [97] and find a pair of starting and ending frames that are visually similar
in the warped video. Specifically, we search for a pair of frames (ti, tj) in W (x, y, t) that are
at least as far apart as a minimum duration specified by the user, and that minimize the
sum of RGB distances between their pixels. We only compare pixels within the blue strokes,
since these regions will remain dynamic in the final composite. We then reduce the input
video volume to this duration, and set the output duration to the same number of frames.

Candidate Video Volumes

We define a set of labels L, that represents two types of candidate video volumes: dynamic
candidates that are copies of the warped video W (x, y, t), and static candidates that are still-
frames from the input video repeated to fill the duration of the output. The first type allows
us to place dynamic, warped video into the parts of the output constrained by blue strokes,
while the second type allows us to select static regions for parts of the output constrained by
red strokes. We denote the set of dynamic candidates as W and the set of static candidates
as S, so that L = W ∪ S.

We first add the warped video to the dynamic label set as Wi. If the output should
loop seamlessly, we add another copy of the warped video, Wj, to the labels W as shown
in Figure 3.4. We create a transition region of time (21 frames) surrounding frames ti and
tj, and the two labels indicate videos beginning at the start of those transition regions. We
time-shift Wj to overlap it with Wi in the output, so that the first and last frames of the

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 24

output loop come from consecutive input frames. The spatio-temporal transition between
Wi and Wj within the transitional buffer will be the best seam for looping from frame tj to
frame ti.

We define the static candidate label and video volume Ik(x, y, t) as a video where the k’th
frame of the input video is repeated for the duration of the output. Using all the frames of
the input video as candidates is cost-prohibitive, so we evenly sample to select five frames.
If b is the time interval that evenly samples the input five times, we define the set of static
candidates S = {Ib, I2b, . . . , I5b}. Finally, the user can optionally choose to include a “clean
plate” still frame candidate containing just the background of the scene.

Labeling Constraints

We create a final composited result by choosing a label λ(x, y, t) from the set L for each
pixel. We place four constraints on this labeling. The first two are based on the user-drawn
compositing strokes. We represent the strokes as υ(x, y) ∈ {red, blue, ∅}. Blue-stroked pixels
must come from dynamic candidates, while red-stroked pixels must come from static candi-
dates.

1. If υ(x, y) = blue, λ(x, y, t) ∈W
2. If υ(x, y) = red, λ(x, y, t) ∈ S

The second pair of constraints limit the durations of the videos Wi,Wj, and are only used
if the output must seamlessly loop. In order to achieve the temporal transition shown in
Figure 3.4b, the first and last frames of the overlapped transition regions must come from
Wj and Wi, respectively, except for pixels that are static.

3. λ(x, y, 0) 6= Wi.
4. λ(x, y, 20) 6= Wj.

Energy Function

In order to generate a visually seamless composite video we minimize an energy function
that measures the visual noticeability of transitions between candidate video volumes. Like
Kwatra et al. [65], we prefer two kinds of seams; those for which the RGB values are similar
across the seam and those that lie along strong edges. However, unique to our application
is the knowledge that the dynamic candidates typically contain foreground objects, while
the static candidates typically contain background. Transitions between foreground and
background along foreground boundary edges are desirable, since they correspond to occlu-
sion boundaries. Therefore, we only use the edge-strength in the dynamic video for seams
between dynamic and static candidates.

We define (p1, p2) as two neighboring pixels in the output (we use a 6-neighbor system
across space and time), and C(p, λ(p)) as the color of the pixel p in candidate video volume
λ(p). We use λ1 and λ2 as shorthand for λ(p1) and λ(p2), respectively. If the labels of the

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 25

Guitar Roulette Grasshopper

Figure 3.5: User provided strokes for our motion visualization examples. Green strokes are
for de-animation, while red and blue strokes are for compositing. Note that minimal user
input and coarse strokes suffice for our method.

neighboring pixels are equal (λ1 = λ2), the seam cost is zero since no seam exists. Otherwise,
the seam cost Φ is

Φ(p1, p2, λ1, λ2) =
γ(p1, p2, λ1, λ2)

Z(p1, p2, λ1, λ2)
(3.8)

γ(p1, p2, λ1, λ2) = |C(p1, λ1)− C(p1, λ2)|2 (3.9)

+ |C(p2, λ1)− C(p2, λ2)|2

As in Kwatra et al., the seam cost measures RGB differences across the seam (γ(·)) divided
by edge strength (Z(·)) across a seam. For our application, we choose to average the edge
strength between two static candidates and between two dynamic candidates, and only use
edge strength in dynamic candidates for seams between dynamic and static candidates

Z(p1, p2, λ1, λ2) = (3.10)

σ(p1, p2, λ1) λ1 ∈ W ∧ λ2 ∈ S
σ(p1, p2, λ2) λ1 ∈ S ∧ λ2 ∈ W
1
2
[σ(p1, p2, λ1) + σ(p1, p2, λ2)] Otherwise

where edge strength within a specific video candidate λ is represented by σ(p1, p2, λ), and
computed with a 3× 3 Sobel filter averaged across RGB.

In total, we seek a labeling that minimizes
∑
p1,p2

Φ(p1, p2, λ1, λ2) (3.11)

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 26

Model K Model S

Beer Glass

Figure 3.6: User provided strokes for our cinemagraph examples. Green strokes are for de-
animation, while red and blue strokes are for compositing. Note that minimal user input
and coarse strokes suffice for our method.

for each pair of neighboring pixels (p1, p2), subject to our stated constraints. We minimize
this energy function using the alpha expansion algorithm [22]. Once a labeling is computed,
we create a final video simply by copying pixels from the candidate videos. An example
labeling is shown in Figure 3.3.

When the length and resolution of the output is too large to compute within reasonable
time and memory, we downsample the input so that there are less than 5 million variables in

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 27

the MRF optimization. If the downsampling factor is less than 8, the full-resolution labeling
is created by bicubic interpolation of the low-resolution labeling, which creates feathered
transitions between the regions. If the factor is larger, we use hierarchical graph-cuts [7] at
a 4x downsampled resolution before performing a final upsampling with interpolation.

3.6 Results

We captured a variety of scenes to evaluate and demonstrate our algorithm. Input sequences
range from 3 seconds to 12 seconds. We down-sample the frames if necessary such that
the height of the video is 720 pixels. We show the input strokes used to create some of our
examples in Figures 3.5 and 3.6; these strokes are the only user effort required by our system.
All examples are shown in the accompanying video. For each, we also provide a video that
compares our approach to alternative de-animation methods on our project webpage.

Motion Visualization

Our first four results reveal motion that is otherwise difficult to see (Figure 3.5).
Guitar: We de-animate both the guitar and the shoulder of the musician to clarify

the finer-scale motions of his fingers. Our spatially varying warp is able to handle multi-
ple opposing constraints for immobilizing and preserving the shape of both the guitar and
shoulder (Figure 3.1). For this example, we include a clean plate image of the scene as a
static candidate during compositing.

Roulette: In roulette, a ball is rolled clockwise along the outer rim while an inner wheel
is rotating counter-clockwise. The complicated motions of the ball as it hits the inner wheel
makes it difficult to see its path. We de-animate the rotating inner wheel to better reveal
the path and physics of the ball and possibly allow the viewer to predict the outcome of the
games.

Grasshopper: The finer-scale leg motions of a jumping grasshopper can be difficult to
see because of the larger-scale motions of its body [103]. While entomologists sometimes glue
insects to sticks in order to eliminate the large-scale motions and observe fine-scale motions
of legs and wings, the glue and sticks can also impact the range of motions an insect can
perform. For example, a full jumping motion is impossible while glued to a stick. Instead,
we de-animate a video of an unencumbered grasshopper so that the motions of its legs are
easier to see at lift-off. It is also easier to compare the length of the legs at full extension to
the length of the body when the grasshopper is de-animated. We do not use our compositing
technique for this example, and instead just crop the warped video.

Snorricam: A Snorricam1 is a specially constructed camera device rigged to an actor’s
body who then moves through a scene. The result is that the actor is mostly static while
the scene moves relative to her. We can simulate this effect without special hardware by
capturing hand-held video, and then de-animating the actor’s body. We show video of such

1http://en.wikipedia.org/wiki/SnorriCam

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 28

Figure 3.7: The image on the left shows the location of the logo the user places in a single
frame. The image on the right shows the logo edit successfully affixed onto the glass 50
frames later. Note that the water has significantly changed.

H Homographies with all tracks
AE After Effects Warp stabilizer
AEM After Effects Warp stabilizer with object mask
HA Homographies with Anchor tracks
SVWA Spatially Varying Warps with Anchor tracks
SVWF Spatially Varying Warps with Floating tracks

Figure 3.8: Legend of method acronyms used in comparisons.

a result on the project web site, as well as average image visualizations of the input and
de-animated output; the actor’s body is much sharper in our output.

Cinemagraphs

Our next four examples are seamlessly looping cinemagraphs (Figure 3.6).
Beer and Glass: We have generated two cinemagraphs that immobilize glassware while

retaining the dynamic motions of the liquid within. The first example shows beer pouring
into a glass while the second shows water swirling in a glass. Because the glassware, hands
and all surrounding objects are still, the motions of the liquid are unexpected and surreal.
De-animating glassware is challenging because the glass is thin and transparent, and the
dynamic liquid within can confuse trackers. Nevertheless our approach is able to properly
immobilize the rims of the glassware. We also show a second result for the beer example

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 29

Path on Warped Video Path on Unwarped Video

Figure 3.9: The image on the left shows the animated path the user drew to generate a
winning number for roulette. The image on the right shows the same path of the ball in the
unwarped video. Notice the complex path the user would have to plan if the inner wheel
was not the frame of reference.

where we animate the beer flowing from the spout. Since the flow is already immobilized in
the input, we use a special, yellow stroke to constrain those pixels to come from the input
video during compositing.

Model K and Model S: It is particularly challenging to de-animate human faces and
bodies because their natural motions involve non-rigid deformations. Our Model K and
Model S cinemagraphs eliminate the motion of the faces and bodies while the motions of the
eyes and hair remain intact. As in the glassware examples, the juxtaposition of static and
dynamic regions is surreal because the resulting cinemagraphs are neither photographs nor
videos.

Video Editing

Editing the appearance or motions of objects in video is a challenging problem. With our
de-animation techniques users can modify a single reference frame in which the object is
immobilized and our system propagates the edits back into the original video. While our
approach is inspired by earlier work on editing video by modifying a reference frame [92], we
offer a simpler method, but one that cannot handle as significant deformations.

Appearance Editing: In Figure 3.7, we add a logo onto the moving glass. For the

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 30

edit to look realistic, the logo must appear to be attached to a fixed location on the surface
of the glass. We de-animate the glass, then superimpose the logo at the desired location.
When the edited video is un-warped, the logo appears properly attached to the glass. Even
the liquid seen through the logo appears natural.

Motion Editing: In Figure 3.9, we edit the motion of a roulette ball. In the original
video the motion of the ball becomes very complicated as it hits the inner rotating wheel.
Designing a new path for the ball is extremely challenging because we must account for the
rotational motion of the inner wheel. Instead, we first de-animate the inner wheel to provide
a still frame of reference and then create a new motion path for the ball with respect to the
immobilized wheel. With de-animation we no longer have to account for the relative motion
of the inner wheel. Once we are satisfied with the new path of the ball we un-warp the video
to obtain the final result. The accompanying video shows the full edit and animation.

3.7 Evaluation

Warping

Figure 3.11 quantitatively evaluates the success of the warp in immobilizing user-specified
regions. (A table of method acronyms is in Figure 3.8.) The numbers in Figure 3.11 are mean
RGB pixel variances, computed within the green strokes across all frames of the output video.
While lower variance usually implies better de-animation, correlation with our perceptual
assessment of the de-animated video is not exact; in particular, brief temporal artifacts can
be very noticeable without significantly changing variance. We therefore strongly encourage
the reader to view the video on our project page which show a detailed comparison for each
sequence.

No existing method is designed specifically for de-animating objects. The closest related
problem is video stabilization, which is designed to remove camera motion rather than object
motion. We compare our approach to the Warp Stabilizer [76] in Adobe After Effects to show
that existing stabilization techniques are not sufficient for our task, with the caveat that we
are using the existing Warp Stabilizer for a purpose it was not designed for. We include two
types of comparisons; we use Warp Stabilizer directly on either (1) the input video directly
(AE) of (2) a version of the input video in which we manually masked out the background
so that the stabilizer would eliminate the motion of the desired object (AEM). We compute
AE and AEM with the stabilization set to ‘no-motion’ using ‘Subspace warp’ with ‘detailed
analysis’. We also compare with simply computing the best homography, using all tracks
(H). In all cases, our algorithm achieves lower numerical variance. From the videos, it is clear
that our approach is also qualitatively better at immobilizing user-selected regions. Finally,
to visualize our results, we compare the average image after de-animation for some examples
in Figure 3.10. In the ideal case, the average image would be perfectly sharp, and our final
method on the right should be compared to the input on the left. However, ghosting and
blurring is clearly visible in results for H, AE and AEM.

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 31

Our Methods
Input AE AEM HA SVWA SVWF

Our Methods

G
ui

ta
r

Be
er

Ro
ul

et
te

M
od

el
 K

Figure 3.10: Average image of de-animated video. Notice the blurring of the guitar, rim
artifacts on the beer, blurring of the roulette wheel, and ghosting in model K for the input
and several comparison methods. Our result SVWF shown rightmost performs significantly
better.

Figure 3.11 also evaluates the steps of our warping algorithm. First, we can use just the
anchor tracks and apply a simple homography to warp each frame to the reference frame
(HA). Our initial warp in Section 3.4 goes beyond a homography to use a spatially-varying
warp (SVWA). Our final refined warp in Section 3.4 also uses the floating tracks (SVWF). In
some cases, HA is adequate, but for more complex examples like Roulette or Grasshopper (see
video), a spatially-varying warp is essential. Even for the Beer example, Figure 3.10 shows
some jerking in the rim. A similar issue arises for Model K, where HA achieves the lowest
numerical variance, but contains temporal jerks due to non-rigid deformations, resulting in
the ghosting effects for HA in the bottom row of Figure 3.10. Using only the anchor tracks
and SVWA is adequate in many cases, and close to the final numerical variance. However,
there are difficult examples like Roulette and Guitar, where we obtain a more accurate result
by also using floating tracks.

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 32

Compositing

Figure 3.12 shows the average image for the input, after warping the beer glass (Section 3.4),
and compositing with the still background (Section 3.5). In the input, large-scale motions
of the glass (blurred in the visualization) can mask the internal motion of the liquid. After
de-animation, the glass is sharp, but distracting motions (again, blurred in this visualization)
are transferred to the background. The final composite appears sharp for both the glass and
background. The final video preserves internal motions of the liquid, while removing gross
motions of the glass.

User Interaction and Timings

Tracking takes approximately 30 seconds for the longest video. The time for warping and
compositing is listed in Figure 3.11, and currently takes a few minutes. User interaction to
draw the coarse strokes can often be done in 1-2 minutes per video. Hence, the complete
pipeline to generate a cinemagraph typically takes less than 15 minutes, with only a fraction
of that time due to user input. Note that our algorithm is currently unoptimized, and we
expect to be able to speed it up considerably in the future. Nevertheless, this workflow
is significantly faster than the largely manual process artists must use today. Indeed, it is
reported that skilled artists can take several hours, if not a day or two to create complex
cinemagraphs2.

3.8 Limitations

There are limits on the operating range of our method. It cannot handle or remove large
3D motions, such as a face rotating from a frontal to a profile view, or the full body of a
walking person.

An example is shown in Figure 3.13, where we try to de-animate the subject’s face, which
undergoes large 3D rotations. The artifacts are easier to understand by watching the video
on our project webpage. A good de-animation result should have the large-scale motions
of the eyes, nose and mouth removed. However, due to the extreme motions of the face,
our system fails to find a spatially varying warp that immobilizes the face. The nose and
mouth still exhibit large scale motions as they do not remain in the same spatial location
throughout the sequence.

Finally, since our method does not include video matting, we limit the types of back-
ground we use for our examples. For example, if our algorithm moves foreground objects
relative to their background during warping, and the background is non-uniform, successful
compositing might require alpha mattes to composite the de-animated foreground onto still
images. Failing to composite only the foreground object from the warped video might result
in animated background regions in the output sequence, which is distracting as shown in

2http://www.filmindustrynetwork.biz/nyc-photographer-jamie-beck-cinemagraph/12173

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 33

C
om

p
ar

is
on

M
et

h
o
d
s

S
te

p
s

of
ou

r
A

lg
or

it
h
m

T
im

in
gs

fo
r

S
V

W
F

#
of

fr
am

es
In

p
u
t

H
A

E
A

E
M

H
A

S
V

W
A

S
V

W
F

W
ar

p
in

g
C

om
p

os
it

in
g

B
ee

r
75

0.
02

5
0.

01
1

0.
02

2
0.

02
6

0.
00

9
0.

00
9

0
.0

0
9

22
s

40
4

s
G

la
ss

83
0.

02
0

0.
01

2
0.

01
5

0.
01

7
0.

01
0

0.
01

0
0
.0

1
0

73
s

57
6

s
G

ra
ss

h
op

p
er

44
0.

03
1

0.
01

3
0.

04
2

0.
03

3
0.

01
6

0.
00

7
0
.0

0
6

14
s

-
G

u
it

ar
20

0
0.

04
0

0.
01

9
0.

03
7

0.
05

5
0.

01
9

0.
01

6
0
.0

1
7

14
4

s
12

87
s

M
o
d
el

K
27

0
0.

02
6

0.
00

8
0.

02
4

0.
03

1
0.

00
8

0.
00

9
0
.0

0
9

42
s

30
0

s
M

o
d
el

S
11

7
0.

01
0

0.
00

2
0.

00
4

0.
00

6
0.

00
2

0.
00

1
0
.0

0
1

26
0

s
65

0
s

R
ou

le
tt

e
25

0
0.

03
6

0.
06

1
0.

06
6

0.
08

8
0.

02
8

0.
02

8
0
.0

2
8

20
4

s
35

4
s

S
n
or

ri
38

0
0.

12
7

0.
06

3
0.

27
3

0.
27

5
0.

06
3

0.
02

6
0
.0

2
8

95
9

s
-

F
ig

u
re

3.
11

:
V

ar
ia

n
ce

s
of

d
e-

an
im

at
ed

re
su

lt
s,

w
it

h
re

sp
ec

t
to

th
e

ta
rg

et
fr

am
e.

V
al

u
es

ar
e

co
m

p
u
te

d
in

R
G

B
sp

ac
e,

va
ry

in
g

fr
om

0
to

1.
L

ef
tm

os
t

co
lu

m
n
s

p
re

se
n
t

th
e

ti
m

e
re

q
u
ir

ed
fo

r
th

e
w

ar
p
in

g
an

d
co

m
p

os
it

in
g

st
ep

s
of

th
e

S
V

W
F

va
ri

an
t

of
ou

r
al

go
ri

th
m

.

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 34

Average Input Average Warped Average Composited

Figure 3.12: The average image of the input sequence, warped sequence and the composited
sequence shows the effectiveness of combining the still background with the de-animated
beer glass while retaining the internal motions of the liquid.

the Ketchup example in the bottom of Figure 3.14. In the video on our webpage, the out of
focus grid ‘swims’ as the background region from the warped video is included in the output.

An obvious solution is to include matting in our algorithm, and we made a first attempt to
model the foreground and background appearances with Gaussian Mixture Models (GMMs),
using an energy term during compositing that prefers cuts along object boundaries. This
simple approach is adequate in some cases; in Figure 3.14, the compositing seam does not
cut through the background for Ketchup when we use GMMs.

However, GMMs fail for some cases when the foreground and background appearances
are very similar. For example, the compositing seam cuts through the hand of the musician
in the guitar example instead of its boundary as shown in the top row of Figure 3.14. This
artifact appears because the color of the hand is similar to the color of the wall on the right
and the ceiling. In this case, the energy minimization finds a composition that is seamless
and obeys the color distribution of the foreground and background but fails to achieve the
goal of matting. In summary, including matting in our algorithm remains a difficult challenge
and topic of future work; while an approach based on GMMs or an alternative technique
might succeed, we do not currently have a robust solution.

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 35

W1 with strokes W58 W83

Figure 3.13: Our method fails to de-animate a face undergoing a large 3D rotation; the nose
and mouth are not aligned throughout the output sequence. The image sequence shows the
1st,with de-animate strokes overlaid on it, 58th and 83rd warped frame.

3.9 Conclusion and Future Work

In this chapter, we have presented a simple and largely automated method for selectively
de-animating objects in a video, removing gross motions to focus on finer-scale movements.
The user only needs to specify coarse strokes on a single frame of the input. With the
increasing use of video as a medium to enhance still imagery, we believe our technique will
lead to much future work on analyzing motions to create more compelling and illustrative
videos.

One limitation for this system is that although it can greatly reduces the time to gen-
erate high quality results from hours to minutes, it still requires some expert knowledge.
Specifically, users will have to understand the nature of the algorithm to figure out where
to draw green strokes to select tracks in order to successfully isolate motion she’s interested
in. While it is difficult to design a system that requires minimal or no user input for general
classes of videos, we can design specific systems for restricted classes of videos.

In the next chapter we explore how portrait videos is a class where we can design a fully
automated system that requires no user input to generate compelling cinemagraphs.

CHAPTER 3. SELECTIVELY DE-ANIMATING VIDEOS 36
G

ui
ta

r
Ke

tc
hu

p

Without GMMs With GMMs

Figure 3.14: Our method might include background regions from the warped video in the
final composite, causing distracting motions in the output for Ketchup. GMMs can be used
to model the foreground and background appearance to achieve a better composition in this
case. However, GMMs does not work for all cases as shown in Guitar, where it fails to find
the boundary for compositing.

37

Chapter 4

Automatic Cinemagraphs

4.1 Introduction

In the previous chapter, we showed how our system can enable users to create new motion
visualizations such as cinemagraphs. Cinemagraphs are a new medium that combines the
benefits of static images and videos; most of the frame is static, but some parts animate in a
seamless loop [1]. For example, a portrait cinemagraph might show dynamic facial expressions
while maintaining a static overall head pose and background. Unfortunately, such portrait
cinemagraphs are remarkably difficult to create, taking professional artists several hours
if not a day [2]. Our system presented in chapter 3 allows users to create cinemagraphs
within minutes by drawing appropriate strokes to select tracks to isolated desired motion
and strokes to composite them onto the final output. However, these strokes might still be
challenging for a novice user to draw as they might not fully understand the inner workings
of the system. Therefore, we seek to design a fully automatic system that can generate high
quality results by restricting the domain of input videos to portraits.

We all use portrait photographs to express our identities online. Portraits are often the
first visuals seen by visitors to our professional webpage, social media profiles, and online
dating sites. However, static portraits can fail to capture the personality we see on people’s
faces in real life, which includes their neutral expressions, smiles, laughs, and the transitions
in-between. Short videos can capture these dynamics, but videos are awkward as online
portraits because they are too dynamic; videos can contain camera and background motion,
as well as large-scale motions of the head and body. They also have a timeline — a beginning,
middle and end.

In this chapter, we completely automate the creation of cinemagraph portraits. Users
simply capture a short hand-held video of a person, push a button, and our system outputs
a portrait cinemagraph. There are a number of recent techniques for creating cinemagraphs,
including mobile apps [3, 4, 5] and several research systems [107, 59, 116, 71]. However,
these techniques are all challenged by portraits, because people are not good at keeping
their head and body perfectly still. The existing techniques only stabilize overall camera

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 38

motion, and a cinemagraph portrait requires removing the gross motion of the subject while
preserving facial expression dynamics. Our system presented in chapter 3 removes the large-
scale motions of objects, but it requires three different sets of strokes from the user, and the
results can be very sensitive to stroke placement. Since compute time is also quite long, the
system is impractical for casual users.

We contribute a fully automatic pipeline for portrait cinemagraphs. This method is
adapted from that in Selectively De-animating Video (Chapter 3), but does not require
user strokes. We use face tracking [96] as well as Kanade-Lucas-Tomasi [78] point tracks
to automatically segment motion into two classes: large-scale head and torso motion that
should be removed from the input video, and fine-scale facial expression motion that should
be preserved in the cinemagraph. We use the large-scale motion information to guide a
spatially-varying warp [74, 12] that removes the gross motion of the portrait subject. We
then use a 2D graph-cut technique [22, 65, 6] to compute a mask that seamlessly combines
the dynamic facial expressions with a still image for the rest of the subject and background.
Our 2D approach is much faster than the 3D graph-cut in Selectively De-animating Video,
which makes our approach amenable to implementation on portable devices such as phones
and tablets. We also compare our method with a more naive approach that does not first
segment motion into two types.

4.2 Overview

Our approach has three distinct stages as shown in Figure 4.1. In the first stage, we au-
tomatically select Kanade-Lucas-Tomasi (KLT) tracks which can immobilize the face and
torso after a warp. Specifically, our method identifies and eliminates KLT tracks that follow
expression motions in the face rather than the gross motion of the entire face. We then use
RANSAC [43] on the remaining static KLT tracks to select a subset that can immobilize
the face using a homography transform. In the second stage, we warp all frames to an au-
tomatically selected target frame using a spatially-varying warp [74, 12] to immobilize the
face.

In the third stage, we composite dynamic facial regions from the stabilized face video
into a still background image. We use graph-cuts optimization on a Markov Random Field
(MRF) to find the best compositing seam between the stabilized face video and the selected
background frame. We automatically generate energy penalties corresponding to the de-
tected moving facial parts in the output to act as constraints for the energy minimization.
We also design new seam costs to encourage compositing seams to occur at regions with
minimal pixel variation over time.

Compared to Selectively De-animating Video, there are two key technical differences that
enable fast, completely automatic cinemagraph generation. First, we automatically analyze
facial motion (Section 4.3) to differentiate between overall head motion and internal motion
of facial expressions. Before this analysis the user needed to carefully place strokes in regions
that only undergo overall head motion, which was challenging. Second, we improve speed by

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 39

KLT Tracks

Face Tracks

Torso Tracks

Facial Feature
Tracking

Average Input Video Average Warped Video Average Output Video

Dynamic Penalty

Static Penalty

Movement Penalty

Automatic Tracks Selection:
Section 3

Spatially Varying Warp:
Section 4

Automatic Energies for 2-D MRF:
Section 5

Figure 4.1: Our method automatically generates a portrait cinemagraph from an input video.
The input, warp and output videos are visualized as averages across time. Notice that the
face and torso are blurry due to motion in the input video. After warping, the face is sharp as
it is stabilized, but the mouth and jaw are blurry as we preserve the internal motions of the
face. The blurred border in the average warp video is due to the motion of the background.
The average output video is sharp for static regions and blurry for facial parts which are
animated. The key to our algorithm is a fully automatic technique to select KLT tracks
which lie on static regions of the face, which allows us to immobilize the face after warping.
We also compute automatic energy values for a graph-cut optimization which composites
the warped video with a still image to create the final cinemagraph.

two orders of magnitude by using a 2D MRF with new cost functions based on facial motion
analysis (Section 4.5), rather than a 3D MRF, along with several other optimizations.

Our approach relies on several assumptions about the input video. First, there is only
one person with one facial pose in the video. We do not handle pose changes at the moment,
although pose selection can be performed as a pre-processing step. Second, the face of the
person should occupy a significant portion of the image; a good rule of thumb is about 10%
of the image area. Third, the face can be aligned using a 2D warp, which means that there
should not be large 3D rotations. However, in practice, reasonable results are obtained even
when these assumptions are violated.

4.3 Track Selection

In the track selection stage, our goal is to select KLT tracks to guide a single spatially-varying
warp to immobilize the face and torso. Our intuition is that KLT tracks that are useful for
stabilizing the large-scale head motion should be located on the face, but not fall on any

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 40

(a) (b)

Figure 4.2: Facial features detected in a single video frame (a). We compute 2 axes per
frame, a vertical line bisecting the face (blue) and a horizontal line across the base of the
nose (green) (b). We measure facial regions by computing the perpendicular distance of their
corresponding feature points to the axis perpendicular to their movement.

moving facial regions that are part of expression changes. They should also be consistent
with a per-frame homography transformation, which is usually a good approximation for the
overall motion of a face that is not significantly changing pose.

We first compute KLT tracks for the input video. KLT tracks which last for the entire
video are denoted K̂A and tracks which do not are denoted K̂F . This definition is similar to
the anchor and floating tracks in Selectively De-animating Video (Chapter 3).

In order to find KLT tracks that are useful for stabilization, we use a face tracker [96] to
mark facial feature points throughout the video and analyze their motion to identify which
facial regions are moving, as shown in Figure 4.1 and discussed in the latter section. Remov-
ing KLT tracks in moving facial regions which are not useful for stabilization significantly
decreases the number of iterations for track selection.

Facial Movement Detection

The goal of tracking facial features is to allow our algorithm to not only identify the location
of the face, but also to determine the movement of the major facial regions in the face. For
our application, we only consider four major facial regions; the eyes, eyebrows, mouth and
lower jaw. The mouth is further sub-divided into three sub regions; the left and right-most
region of the lip and the bottom lip. We use Saragih et al.’s [96] face tracker to track the
location of 66 facial feature points across the face as shown in Figure 4.2a.

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 41

Facial Region Feature # Axis Motion
Threshold

left eye 38, 39 Horizontal 0.001
right eye 44, 45 Horizontal 0.001
left brows 20, 21, 22 Horizontal 0.003
right brows 23, 24, 25 Horizontal 0.003
left tip of lip 49 Vertical 0.0015
right tip of lip 55 Vertical 0.0015
bottom lip 57, 58, 59 Horizontal 0.0015
bottom jaw 8, 9, 10 Horizontal 0.0015

Figure 4.3: Each facial region is represented by the mean position of the corresponding
feature number in the second column. The distance values for each region are measured
from the assigned axis in the third column. The fourth column is the threshold value for
motion detection after convolution with a LoG kernel and normalization by nose length l.

The location of each facial region is the center of its corresponding facial feature points
which are listed in Figure 4.3. We monitor the position of each facial region across time by
using a coordinate transform. We measure its perpendicular distance from one of two local
face orientation axes to detect finer-scale motions, as shown in Figure 4.2b. One axis bisects
the face vertically passing through the bridge of the nose, and the other bisects the face
horizontally across through the base of the nose. The vertical axis (blue) is the best fit line
which passes through the facial feature points through the bridge of the nose and chin, and
the horizontal axis (green) is the best fit line which passes through the facial feature points
through the base of the nose. We recompute the face orientation axes for every frame. Note
that the two axes are not necessarily perpendicular. We have found that this fit is stable for
most of our examples as the facial feature tracker is stable for small facial motions.

We measure the perpendicular distance of each facial region from the axis where the
motion change is dominant. This gives us fine-grained movement discrimination, so we can
differentiate a slight smile where lips are closed (horizontal displacement of edges) versus a
laugh (vertical displacement of lower lip). For example, the position of the eyebrow is the
perpendicular distance measured from the horizontal axis (green). Figure 4.3 shows which
axis each facial region is measured from.

We also compute the radius r and the nose length l of the face. Radius r is computed
by averaging the three pixel distances from the center of the nose to the lower jaw, left ear
and right ear (features # 9,1,17). Length l is simply the average length of the nose in pixels
computed from the start and end feature points of the nose over all frames (features # 28,
31). We normalize all distance computations so that our algorithm is independent of face
size by dividing all distances with l.

We use a median filter of kernel size 5 to smooth temporal noise after we compute the

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 42

0 50 100 150 200 250
20

30

40

50

60

70

80

right eye
left brow

left lip
right lip
bot lip
bot jaw

left eye

Frame number

D
is

ta
nc

e

right brow

detected blinks

detected wide smile

Figure 4.4: Typical raw distance values for facial regions in an input video. Notice the eye
blinks give rise to distance drops for the eyes. These time instances are marked with a blue
horizontal arrow. A smile causes the distance of the lips to change and this time instance is
marked with an orange horizontal arrow.

distances for each facial region per frame. Figure 4.4 shows a typical plot of the raw facial
region responses for an input video and the detected movement. Note how the distance
measurements change significantly for the facial regions when they move. We convolve the
measurements with a Laplacian of a Gaussian (LoG) kernel of size 35 with sigma 4 to detect
sudden change within a 1 second timeframe. The peaks of the convolved response indicate
potential movement for their corresponding regions. For a facial region to be considered
dynamic with respect to the face, the peaks in the convolved response have to be larger than
a specified value. Figure 4.3 shows the threshold for movement detection we use, normalized
by the nose length l. These thresholds were determined empirically from our dataset.

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 43

Inlier 0.6 0.64 0.69 0.75 0.81 0.9
ratio
of 3159 1378 556 204 65 17
iterations

Figure 4.5: Here we show the number of iterations needed to guarantee a probability of 0.99
to find a good homography fit for varying inlier ratios (total number of tracks = 30). As the
inlier ratio improves, we need significantly fewer iterations to find a good homography.

Track Pruning

KLT tracks in K̂A that do not track large scale motion of the head should not be used for
stabilization. We first select only the tracks in the facial region by removing tracks in K̂A

that are outside of a radius of 1.5r pixels from the center of the face. Second, we further
prune the tracks that lie on the dynamic facial regions that form expressions by removing
tracks that are inside or within a 0.2l distance from a moving facial region.

Once these tracks have been removed, we use RANSAC to fit a per-frame homography
to the face motion; RANSAC also removes additional outliers that do not follow the overall
face motion. Note that the initial removal of tracks significantly improves the ratio of inliers
to outliers for homography fitting. A slight improvement in inlier ratio can significantly
decrease the number of iterations needed for RANSAC to have a good probability of finding
a fit which in turn decreases the computation required. Figure 4.5 shows the number of
iterations needed for a 99% confidence of finding a good fit with varying inlier ratios. In
practice, we have found that using this track removal technique decreases the number of
RANSAC iterations needed by up to 2 orders of magnitude.

At each RANSAC iteration, we attempt to remove the motion of the face over the entire
video by fitting homographies per frame to the remaining tracks using linear least squares.
The set of tracks which gives the lowest RMS error for inliers after fitting homographies
are the final set of selected tracks. We run RANSAC for 50 iterations with a 3.5 pixel
inlier threshold for all of our examples. We label the final selected tracks from K̂A as KA.
Figure 4.6a shows KA selected for the face.

K̂F tracks do not last the entire duration of the video, but can still help to guide the
warp if we can be sure they are within regions which do not contain finer-scale motions.
They provide consecutive frames with constraints during warping. We find useful KF tracks
by warping K̂F tracks using the homographies estimated to align the frames. If a K̂F track
deviates no more than 3 pixels for each frame from its mean position, we consider it to be
an inlier. The inlier KF tracks are then used as input for warping along with KA tracks.

We apply the same technique to stabilize the torso, but set the center of the torso as 3r
below the face and only consider tracks within a radius of 4r of that center. No torso-specific
track selection is performed, but any tracks removed during facial track selection are also not
used for the torso even if they fall within the torso radius. Note that the homographies fit

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 44

(a) KA for face

(b) KA for torso

(e) D(n) for smiles

(f) S(n) for smiles

(c) D(n) for eyes

(d) S(n) for eyes (g)M(n)

Figure 4.6: From left to right: (a) KA for face, (b) KA for torso, (c) example D(n) for eyes,
(d) corresponding S(n) for eyes, (e) example D(n) for smiles, (f) corresponding S(n) for
smiles, (g) example M(n). The energy values are visualized overlaid with the portrait to
provide spatial reference. High energy values of 1 have high luminance values, while energy
values of 0 are black.

to torso movement are separate from the face homographies. Figure 4.6b shows KA selected
for the torso.

4.4 Warping

The goal of warping is to immobilize the face and torso in the video. Our approach finds a
target frame to warp to instead of picking the first frame or forcing the user to select one.
The automatically selected target frame should generate the least amount of warping after

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 45

registering all other frames to it. Therefore, we find the target frame T by selecting the
input frame t1 that minimizes the L2 distance between the locations of all KA tracks in all
other frames t2.

T = arg min
t1

∑
all tracks,t2

|KA(t1)−KA(t2)|2 (4.1)

Frame T is also the target frame used in the next compositing stage.
We use the same warping algorithm as described in Selectively De-animating Video

(Chapter 3.4) with our automatically selected KA and KF as input. The tracks act as
constraints over a grid mesh defined over each frame. Since the tracks specify locations on
static regions, they should not move after the warp. Therefore, we solve for a set of meshes
where the tracks KA and KF are stationary over time using least squares. Since we have
selected the tracks KF , we only have to use the second, refined warp described in Selectively
De-animating Video (Chapter 3.4), thus reducing computation costs by up to 50%. The
warped output is generated by texture mapping the frames onto the grid mesh.

4.5 Compositing

At the final stage, we use graph-cuts over a 2D Markov Random Field (MRF) to composite
the warped video with the target still frame. Each node n corresponds to a spatial pixel
location and is assigned one of two labels: λ = {still, warp} after a cut is computed. Since
our MRF is 2D, the assigned label at the node determines the pixel source for that spatial
location across time; either the target frame T or the warped video. Our compositing
algorithm is based on Selectively De-animating Video (Chapter 3.5) , but with three key
differences. One, we use a 2D rather than 3D MRF. Two, we use a single still target frame,
rather than a set. Three, since we no longer have user-provided strokes to guide the choice
between still and dynamic regions, we must instead design new cost functions based on our
analysis of facial motion that select only tracks indicating overall head motion.

There are two types of energies for our MRF: node potentials and seam costs. Node
potentials are determined by the label assigned at the node n and seam costs are defined over
two neighboring nodes, n1 and n2. We design our energy such that when it is minimized over
the MRF using graph cuts, the labeling results in a composite cinemagraph that is natural
with desired animated and static regions that transition seamlessly. We describe our cost
functions (automatic energy functions) in Section 5.1 and our overall energy functions in Sec
5.2.

We loop the output video by finding a pair of starting and ending frames that are visually
similar. We minimize the total L2 RGB distance in the warped video at the moving facial
regions, using the same technique as video textures [97] to find the best loop. We then trim
the input video and warped video to this duration. We also create a seamless cinemagraph
by interpolating between the start and end frames to minimize visual artifacts using optical
flow [72]. We advect pixels from both directions based on their computed corresponding flows

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 46

to generate an additional 10 intermediate frames. We cross-fade between the two constructed
interpolations to create a temporal seamless loop.

Automatic Energy Functions

We compute three sets of energy functions (D(n), S(n) and M(n)) that range from 0 to 1 and
are shown in Figure 4.6c-g. The energy terms are computed per node and thus correspond
to each pixel. The computation of our energy terms is dependent on the presence of lip or
jaw movements detected in the facial expressions; we use the movement detection approach
described in Section 4.3 and Figure 4.3. These automatic terms are designed to provide
constraints to guide the MRF optimization. Specifically, D(n) is designed to encourage
moving facial regions from the warped video to be composited in the final result. S(n)
is designed to encourage relatively static regions to become static in the final result by
compositing a still image. M(n) is designed to encourage seam transitions to happen at
regions with minimal pixel variation over time.

Dynamic Region, D(n)

This energy is computed for nodes with label λ = still. We wish to assign a high energy for
these nodes if they are within dynamic facial expressions, since they should be animated.

If no lip or jaw movements are detected, each feature point at a moving eye or eyebrow
is assigned an energy value of 1 at its location at frame T with a radius of 0.1l, as shown in
Figure 4.6c. Pixels without any contributing features are assigned a 0 energy. The energy
region is processed using morphological closing (image dilation followed by image erosion)
with a radius of 0.25l to fill in holes in the energy region.

We generate this penalty differently if lip and jaw movements are present as the entire
face is usually animated due to muscle structure. Each feature point at the lower jaw, eyes,
eyebrows, nose and lips is assigned an energy value of 1 at its location at frame T with a
radius of 0.1l. The energy region is processed using morphological closing with a radius of
0.5l as shown in Figure 4.6e to fill in holes in the energy region.

Static Region, S(n)

This energy is associated with nodes with label λ = warp. We wish to assign a high energy
for these nodes if they are not within dynamic facial expressions, since they should not be
animated. We also want a ribbon of pixels between S(n) and D(n) where there are minimal
constraints so that the algorithm is free to find seamless boundaries for compositing.

If no lip or jaw movement is detected, we generate this penalty by an image erosion of
the complement of D(n) by a size of 0.5l. We then compute a linear penalty fall off with
gradient 20 to encourage transitions to happen near the face, as shown in Figure 4.6d.

If lip and jaw movements are detected, we generate this penalty by an image erosion of
the complement of D(n) by a size of 3l. We then compute a linear penalty fall off with

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 47

gradient 5 to encourage transitions to happen near the face, as shown in Figure 4.6f. We use
a larger kernel and a smoother gradient for image erosion because lips and jaw movements
require a larger region for animation. The linear fall off is computed by using a Euclidean
distance transform [41] multiplied by its corresponding gradient.

Pixel Movement, M(n)

This energy measures a component of the cost of seams between neighboring pixels. We
want seam transitions between warp and still regions to happen where there are minimal
pixel fluctuations across time. Hence, we take the maximum RGB L1 distance of each pixel
from the mean image of the warped video Ŵ (x, y) across all frames, as shown in Figure 4.6g.

M(x, y) = maxt(|Ŵ (x, y)−W (x, y, t)|); (4.2)

Energy Function

There are two types of energies; node potentials Ψ and seam costs Φ. Each node n in
the MRF has an energy associated with it depending on its label. A is a constant set to
1000000 to discourage any dynamic regions from being assigned a static label. Then the
node potential Ψ is defined as:

Ψ(n, λ) =

{
A×D(n), if λ = still

S(n), if λ = warp
(4.3)

Seam costs are defined over 2 neighboring nodes n1 and n2 depending on their assigned labels.
Let λ(n) be the assigned label at node n and C(n, λ(n), t) be the color of the pixel p at the
node location from its respective label source at frame t. If the labels of the neighboring
nodes are equal (λ1 = λ2), the seam cost is zero. Otherwise, the seam cost Φ̂ at time t is

Φ̂(n1, n2, λ1, λ2, t) =
γ(n1, n2, λ1, λ2, t)

Z(n1, n2, λ1, λ2, t)
(4.4)

γ(n1, n2, λ1, λ2, t) = |C(n1, λ1, t)− C(n1, λ2, t)|2 (4.5)

+ |C(n2, λ1, t)− C(n2, λ2, t)|2

This seam cost is based on the work of Agarwala et al. [6]. Function γ measures the color
similarity of the source pixels at the two nodes along the seams, while Z measures the edge
strength of the warped video. Therefore, Φ̂ encourages seams to have similar colors or lie at
edges in the warped video.

Z(n1, n2, λ1, λ2, t) = (4.6)
σ(n1, n2, λ1, t) λ1 ∈ warp ∧ λ2 ∈ still
σ(n1, n2, λ2, t) λ1 ∈ still ∧ λ2 ∈ warp
1
2
[σ(n1, n2, λ1, t)

+σ(n1, n2, λ2, t)] Otherwise

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 48

where σ(n1, n2, λ, t) is the edge strength within a pixel source λ and is computed with a 3×3
Sobel filter averaged across RGB.

Since we are using a 2D MRF instead of a 3D MRF, we collapse the seam cost across
time to compute the best overall static compositing matte. We also include M(n) in the seam
cost to encourage seams to occur in regions that have minimal pixel variation over time.

Therefore, the total seam cost Φ, across all time is

Φ(n1, n2, λ1, λ2) =
∑
t

Φ̂(n1, n2, λ1, λ2, t) + α(M(n1) +M(n2)) (4.7)

where α = 200. In total, our energy function which we seek to minimize is:

N

4

∑
n

Ψ(n, λ) +
∑
n1,n2

Φ(n1, n2, λ1, λ2) (4.8)

where N is the total number of frames in the output video. Ψ provides constraints on which
general region should be static or dynamic while Φ encourages seams to occur between pixels
with similar colors and a stable appearance over time, or lie at an edge. We minimize this
energy function using the alpha-expansion algorithm [22]. Once a labeling is computed, we
create a final video simply by copying pixels from their respective sources.

4.6 Results

We captured 15 portrait videos and produced cinemagraphs to demonstrate the wide range
of results our algorithm can create. Input sequences range from 5 seconds to 10 seconds. We
resize the frame to 405 by 720 pixels. The videos are captured using DSLRs as well as mobile
phones. Figures 4.10, 4.11, 4.12, and 4.13 detail the examples that we used. The figures
show the average image for both the input and output videos, tracks automatically selected
by our algorithm and the automatically generated penalties. Notice that the average input
images are blurry as there is camera shake, while the average output image is only blurry at
facial features with movements. Please refer to our main video and portrait cinemagraphs
for each model for the final results, as well as the supplementary material for comparisons.

Comparisons

To evaluate the quality of our result, we show some comparisons of our automated cinema-
graphs against our user driven method described in Chapter 3 in Figure 4.7. Notice that
the stabilization in the result video is equally good even though our method selects fewer
(but the most critical) tracks. Our method is capable of selecting tracks within the face that
might be too tedious for the user to select with fine strokes, such as tracks that are between
the eyes (Figure 4.7b,d,f). The compositing seams are also comparable even though our
method uses only a 2D matte (see videos). In some cases, our method includes a small por-
tion of the background in the final output, which can be distracting as the background will

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 49

be animated. This could be due to the use of a static 2D matte or the automatic approach
failing to find a compositing seam within the face.

In some examples, the motion of the camera and face is simple and a regular video
stabilization algorithm will be able to stabilize the input video well enough for creating
cinemagraphs. However, input videos with moving backgrounds or erroneous tracks in the
background region can cause regular video stabilization to fail. Our method does not suffer
from this issue because we only use tracks which lie on stationary regions on the face and
torso. Please refer to the supplementary material for comparisons.

Another comparison we perform is to a naive algorithm that does not first prune tracks
on dynamic facial expressions. Given the inlier/outlier ratios for each of our 15 videos, we
simulate the number of RANSAC iterations needed to give a 99% probability of finding the
correct homography. We find an average reduction in the number of iterations to be a factor
of 27, with the largest reduction a factor of 185 across our examples.

Timings

The timings for each stage of our pipeline are shown in Figure 4.8. Our current implemen-
tation is single threaded and timings are measured on a 2 Ghz Intel i7 laptop. Our method
is faster than previous work in all stages of the pipeline. For track selection, our method
averages 0.70 seconds while a user will take 90 seconds (Chapter 3.6), on average. Since
our warp is simpler, our timings are also much faster. Our 2D graph cut is significantly
faster than previous work due to the smaller number of nodes as well as the smaller set of
labels. Our average compositing times are 14.41 seconds while the average compositing time
in previous work is about 600 seconds for shorter videos (Chapter 3.6). Also, previous work
often required iterations from the user to improve the input strokes.

Eyes and Eyebrow

All the input videos have eye movement from blinking. Our algorithm successfully com-
posites the blinks as well as any eyebrow movements into the final cinemagraph. The large
movements of the eyebrow in Model A are successfully retained and animated in the output
cinemagraph. However, for some examples such as Model R, slight movements beyond the
eye are also included in the output cinemagraph as seen in the video.

Lips and Jaw

Most of our examples have mouth movements such as smiles that are successfully animated
in their output cinemagraphs. Jaw movements are the hardest to composite as the face
usually changes its appearance significantly. Track selection becomes harder as there are
fewer static tracks. The margin of error for compositing is also greatly reduced as most of
the face is animated. Therefore, no previous work demonstrates animated smiles. None the
less, our algorithm successfully composites large jaw movements and smiles such as Model

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 50
U

se
r s

tr
ok

es
Au

to
m

at
ic

Figure 4.7: Comparison of the tracks selected using user-provided green strokes (Chapter
3), versus our automatic method. Notice that our method selects fewer but more crucial
tracks for stabilization. Our method has the advantage of selecting tracks that are very near
moving regions where it is hard for the user to draw appropriate strokes.

B and Model R, as shown in our video. Notice that while there are large motions for the
entire face for Model R, we are still able to generate a good portrait cinemagraph.

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 51

Eg. # Track Warp Comp Total
frames (Sec. 3) (Sec. 4) (Sec. 5)

A 131 0.43 s 3.86 s 5.53 s 9.82 s
B 235 0.69 s 6.78 s 12.97 s 20.44 s
C 383 0.69 s 11.19 s 43.62 s 55.5 s
D 243 0.93 s 7.38 s 14.51 s 22.82 s
E 157 0.76 s 5.10 s 7.77 s 13.63 s
F 157 0.44 s 4.49 s 8.33 s 13.26 s
G 157 0.56 s 5.39 s 9.28 s 15.23 s
J 279 0.60 s 8.53 s 19.91 s 29.04 s
M 181 0.76 s 6.33 s 12.12 s 19.21 s
N 281 1.70 s 9.64 s 21.88 s 33.22 s
R 292 0.83 s 9.02 s 22.52 s 32.37 s
S 153 0.57 s 4.02 s 6.57 s 11.16 s
T 180 0.43 s 5.48 s 10.18 s 16.09 s
U 180 0.53 s 5.70 s 9.61 s 15.84 s
Y 180 0.72 s 5.93 s 11.37 s 18.02 s

Figure 4.8: The timings for track selection, warping, compositing and total time taken of
our automatic algorithm for all our examples. Please look at our accompanying video for
the results. Models E,F,T are shot with a mobile phone.

Failures

Our method fails at times when the facial deformation is too large and too fast. Our seam
cost is an average of the seam costs across time. Therefore, if a large deformation lasts for
only a short period of time, the aggregate seam cost will not change significantly and the
composite will be poor as shown in Figure 4.9a as well as our video result.

User Study

The aesthetics of portrait cinemagraphs can be rather subjective as some people find the
motion of only parts of the face surreal or uncanny. Therefore, we conducted a user study on
Amazon Mechanical Turk to better understand how the general population would respond to
portrait cinemagraphs. We showed 30 users 7 sets of results (30 HITs, each HIT has 7 sets).
For each set, we showed the still image, the input video and our cinemagraph result side-by-
side and asked them to pick their favorite medium to represent each person. We recorded
218 total votes and 80.3% of them were in favor of dynamic portraits (either input video or
cinemagraph). 53.0% of the total votes were for cinemagraphs and only 19.7% were for a still
image. Our collected votes yield χ2 = 40.5229 when computed against an expected uniform

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 52

(a) (b)

(c) (d)

Figure 4.9: The example in (a) has a poor compositing result at the mouth due to the sudden
large movement. The average seam cost is dominated by the rest of the video. The facial
features detection is bad in examples (b),(c) and (d). While example (c) still produces a
good result due to the correct estimates for the mouth and jaw, examples (b) and (d) are
failures.

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 53

distribution and exceeds the χ2 value of 13.82 for p = 0.001 with 2 degrees of freedom.
Therefore, the survey supports our hypothesis that people do in general prefer cinemagraphs
for portraits. We also asked the users if they would use an automated technique to generate
their own cinemagraphs and 73.3% of them indicated that they are willing to try such a
technique.

Limitations

Since our method is dependent on accurate facial feature tracking, we will not always produce
good results if the facial feature tracker fails. In the example shown in Figure 4.9b, the jaw
is moving but the face tracker fails to accurately detect its location. As a result, the video is
stabilized with respect to the jaw causing the head to move up and down in the result video.
Our method works in some cases when the facial feature tracker is partially correct as shown
in Figure 4.9c but will certainly not work when it misses the face entirely as in Figure 4.9d.

Since we are using a spatially-varying warp to align faces, we cannot handle large rotations
of the face, where occlusions as well as depth discontinuities become prominent.

4.7 Conclusions and Future Work

We have presented a fully automated technique for creating portrait cinemagraphs that
requires no user input; the user simply captures a hand-held video and receives a portrait
cinemagraph. Our technique also runs faster than the system presented in Chapter 3 due to
a more efficient MRF optimization and a simpler one-stage warp. The key contribution is a
technique for segmenting facial feature tracks into those that are part of facial expressions,
and those that track the overall face pose. Also, by defining energy functions unique to our
problem, we can automatically composite the warped video to create a portrait cinemagraph.

One avenue for future work would be to automatically detect and composite additional
moving regions such as cloth or hair onto the final cinemagraph. These regions are signifi-
cantly more difficult to handle, especially when the person is moving in the video, because
of motion ambiguity between the background, cloth, hair, and rest of the person.

In summary, we believe our automatic technique will empower novice users with the abil-
ity to create their own cinemagraph portraits without effort and expertise. As cinemagraph
portraits are more expressive than static photographs, we think that they will eventually
become a popular alternative to conventional portraits in webpages and social media.

In chapter 3, we presented a system that allows users to de-animate objects and retain
motion in desired areas to create novel visualizations and cinemagraphs. However, since the
user input required for de-animation can be challenging for novice users, we restricted the
class of input videos to only portrait videos. This restriction allows us to design a fully
automatic system to generate portrait cinemagraphs with similar quality and up to 60 times
faster in computation time compared to the user driven approach, detailed in this chapter.

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 54

In the next chapter, we explore how user input can be used to improve video stabilization
results.

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 55
M

od
el

 A

Average
Input

Average
Output

Selected
Tracks

Dynamic
Penalty

Static
Penalty

Motion
Penalty

M
od

el
 B

M
od

el
 C

M
od

el
 D

Figure 4.10: Notice that the average input images are blurry as there is camera shake, while
the average output image is only blurry at facial features with movements. The automatically
selected tracks lie on areas with no motion. The automatically generated penalties help to
guide the composite to have motion only at moving facial parts and compositing seams
should lie at regions with minimal appearance changes.

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 56
M

od
el

 E

Average
Input

Average
Output

Selected
Tracks

Dynamic
Penalty

Static
Penalty

Motion
Penalty

M
od

el
 F

M
od

el
 G

M
od

el
 J

Figure 4.11: Notice that the average input images are blurry as there is camera shake, while
the average output image is only blurry at facial features with movements. The automatically
selected tracks lie on areas with no motion. The automatically generated penalties help to
guide the composite to have motion only at moving facial parts and compositing seams
should lie at regions with minimal appearance changes.

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 57
M

od
el

 M

Average
Input

Average
Output

Selected
Tracks

Dynamic
Penalty

Static
Penalty

Motion
Penalty

M
od

el
 N

M
od

el
 R

M
od

el
 S

Figure 4.12: Notice that the average input images are blurry as there is camera shake, while
the average output image is only blurry at facial features with movements. The automatically
selected tracks lie on areas with no motion. The automatically generated penalties help to
guide the composite to have motion only at moving facial parts and compositing seams
should lie at regions with minimal appearance changes.

CHAPTER 4. AUTOMATIC CINEMAGRAPHS 58
M

od
el

 T

Average
Input

Average
Output

Selected
Tracks

Dynamic
Penalty

Static
Penalty

Motion
Penalty

M
od

el
 U

M
od

el
 Y

Figure 4.13: Notice that the average input images are blurry as there is camera shake, while
the average output image is only blurry at facial features with movements. The automatically
selected tracks lie on areas with no motion. The automatically generated penalties help to
guide the composite to have motion only at moving facial parts and compositing seams
should lie at regions with minimal appearance changes.

59

Chapter 5

User-Assisted Video Stabilization

5.1 Introduction

In chapter 3 and 4, we introduce new video editing algorithms that isolate finer-scale mo-
tions on objects and composites them onto still regions to form compelling visualizations or
cinemagraphs. Our algorithm is able to generate these high quality results because we design
them to use information regarding the input video’s content either obtained from user input
or computed using computer vision. In this chapter, apply the same insight to the problem
of video stabilization. The goal is to improve automatic video stabilization results with user
provided information about the video’s content and to enable user control of the stabilized
result.

Video stabilization algorithms have improved dramatically in recent years, and can sim-
ulate remarkably smooth camera paths. Recent algorithms are 3D-aware and go beyond
single-homography motion models to produce much higher quality results. However, these
algorithms all have a significant problem; they are one-button press, and offer no user con-
trol other than manipulating global parameters. If the stabilization result is flawed, or the
user simply wants something else, there is no recourse. We introduce two techniques for
interactive control of video stabilization.

The first step in current video stabilization methods is to track feature points that esti-
mate scene and camera motion. The video is then stabilized by warping the frames such that
the key feature points follow a smooth trajectory. However, challenging scenes such as those
containing a large range of depths and dynamic objects are difficult to stabilize. One reason
for failure is that selecting tracks that belong to the background becomes difficult for scenes
with dynamic content. If the algorithm uses tracks on dynamic objects (Figure 5.1(c)) to
estimate camera motion and warp the frames, the output video may be unstable. Another
reason for failure is that the stabilized video is computed without any knowledge of the
scene’s semantic content. As a result, regular video stabilization might not yield a desirable
visual appearance. For example, vertical structures in the stabilized scene shown in Fig-
ure 5.1(a) are tilted and a viewer might prefer these structures to remain vertical, as shown

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 60

in our corrected version in Figure 5.1(b). Our work directly addresses these two issues by
providing two tools for the user to customize the stabilization result. Our algorithm starts
with an initial baseline automatic video stabilization result [77] which the user can further
improve using our tools. First, the user can improve track selection to ensure that only
background tracks are selected. We cluster tracks spatio-temporally across the video so that
the user can interact with tracks at the granularity of whole objects and motions, rather than
individual tracks. We then plot clustered track trajectories on the warped video to allow
the user to visually inspect and correct the track selection if necessary as demonstrated in
Figure 5.1(c-d). Our clustering improves upon the previous clustering techniques by using
a moving window factorization which speeds up computation by 12 times while maintaining
similar clustering properties.

Second, we allow the user to provide feedback to the algorithm describing how parts of the
stabilized video should look. The user corrects regions at unsatisfactory frames by drawing
quadrilaterals on the frame and providing her preferred location for the quadrilateral in the
final stabilized video as shown in Figure 5.1(e-f).

After the user has provided edits to improve the stabilized video to her liking, we rewarp
the video only using tracks that she has selected and constrain the output video to incor-
porate the region edits from the quadrilaterals that she has specified. The resulting video
exhibits smooth motion for the selected tracks while also respecting the user-specified region
constraints.

Our work is the first user-assisted video stabilization pipeline which allows the user to
influence the video stabilization algorithm. In some cases, fixing user-specified artifacts may
lead to new artifacts; however, for most examples we find there to be a net improvement in
stabilization quality.

5.2 Background

Bundled paths [77] is a state-of-the-art video stabilization algorithm which performs well with
challenging videos. The algorithm divides each frame into a 16 by 16 grid and estimates
camera paths throughout time for each cell. The stabilized output video is obtained by
smoothing the individual paths both temporally and spatially. We use bundled paths as the
baseline in our system; the user will provide inputs (Sections 5.3 and 5.4) to further improve
the stabilized video. This section describes the bundled paths algorithm.

Content-preserving warps [74] guided by SURF tracks [17] are used to align neighboring
frames t and t+1. The homography which transforms grid cell i from frame t to t+1 is Fi(t) as
illustrated in Figure 5.2(a). The paths are parameterized by the transformations of the grid
cells over time. Therefore, the camera path Ci(t) for each grid cell is defined as the sequence
of homographies the cell goes through from the start of the video to frame t. Mathematically,
the camera path Ci(t) for a grid cell i at frame t is Ci(t) = Fi(t− 1) · · ·Fi(1)Fi(0).

The stabilized camera path Pi(t) is derived from the camera path Ci(t) (Figure 5.2(b)).
The algorithm computes Pi(t) by optimizing an energy function O(P (t))such that camera

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 61

a) Still Frame From Initial Stabilization

b) Still Frame From Our User Guided Stabilization

e) Initial Warped Framec) Initial Automatic Track Selection

f) User-corrected Framed) User-corrected Track Selection

Figure 5.1: Automatic video stabilization using the state-of-the-art is unsatisfactory as shown
in a) as the background and subjects are heavily skewed. We visualize clusters of tracks used
for stabilization c) and the user removes tracks on dynamic objects d) using mouse clicks.
Tracks that are not used for the final rewarp are drawn in grey. The green outline in e)
and f) shows the original frame boundaries. The distortion of the frame in e) is removed
by having the user draw a quadrilateral (white lines) and its desired transformation shown
in f). The new track selection and user-drawn transformations are used to re-stabilize the
video to obtain the final result as shown in b). Notice that the background is rectified and
that the subjects are no longer distorted.

path for each grid cell i is smooth temporally and is similar to the path of its neighboring
grid cells,

O(P (t)) =
∑
t

(||P (t)− C(t)||2)

+
∑
t

(λt ·
∑
r∈Ωt

ωt,r(C) · ||P (t)− P (r)||2)

+
∑
t

∑
j∈N(i)

||Pi(t)− Pj(t)||2
(5.1)

The first term enforces that the smooth path is similar to the original path to minimize
cropping and distortion, the second term enforces smooth temporal changes, and the third
term enforces spatial smoothness among the grid cells. The temporal window for smoothing,
Ωt, is set to 60 frames and N(i) includes the 8 neighboring grid cells. The strength of the
smoothing is controlled by λt. The smoothing kernel ωt,r gives higher weight to paths with
temporal proximity and similar transformations. It is set to the product of two Gaussians;
the first Gaussian is a function of the frame distance and the second is a function of the
difference in translation coefficients of the camera path Ci(t). A Jacobi-based iterative solver
is used to solve for the optimal camera path P (t). For more details of the algorithm, please
refer to the original paper [77]. We used our own implementation of the algorithm for our

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 62

Ci(t+1)

Ci(t)

Cj(t)

Fi(t)

Fj(t)

C(t) C(t+1)

P(t) P(t+1)

Q(t) Q(t+1)

F(t)

B(t) B(t+1)

H(t) H(t+1)

(a) (b)
U(t) U(t+1)

D(t) D(t+1)

Cj(t+1)

Figure 5.2: Homographies Fi(t) computed between grid cells Ci(t) and Ci(t + 1) illustrated
in (a). Relationships between the computed camera path C(t), the smoothed camera path
P (t), the user-specified path Q(t) and the final user-assisted stabilized video U(t) are shown
in (b).

work.
The output video is obtained by applying the transformation B(t) to the input video,

which is computed as B(t) = P (t)C−1(t).

Our Work

We use the smooth camera path P (t) as the baseline for our method, but do not assume
that it is satisfactory. The user provides a set of constraints on which tracks are selected
(section 5.3) and how regions in the video should look after stabilization (section 5.4). Region
constraints are represented by Hk(t), where some region in frame t is transformed with the
homography Hk(t) to obtain the user-specified path Q(t). If no constraints are specified, then
Hk(t) is the identify transformation. Since the user does not specify changes to every frame,
Q(t) needs to be smoothed. We compute the final user-assisted stabilized video U(t) by
minimizing an energy function described in equation 5.5 in section 5.4. The transformation
D(t) is used to correct Q(t) to get the U(t) and it is computed as D(t) = U(t)Q−1(t).
Figure 5.2(b) illustrates the relationship between the different paths.

5.3 Improving Track Selection

Selecting the appropriate set of tracks to guide the stabilization algorithm is crucial to the
success of the stabilized video. Tracks that accurately track key feature points should be

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 63

V0

V1

S0

S1

S2

W0

W1

W2=
x

V2

x

x

=

=

Our A�nity Matrix A

10

m
ag

ni
tu

de
co

si
ne

si
ne3

*(

of
 fr

am
es

-1
)

of tracks .
.

. Eigenvectors of A

Reduced Feature Weights

Average Spatial Location

k-means
clustering

Velocity Pro�le, V Moving Window Factorization and A�nity Matrix Clustering

+

Figure 5.3: There are three steps in our track clustering algorithm. The velocity profile V
is computed using the magnitude and direction of the tracks. It is sparse as the tracks are
short. Next, we find sub-matrices Vi by selecting only velocity profiles that exist in a window
of 20 frames. The step size for the window is 10, which gives us overlapping windows and
therefore dependent motion bases Si. The affinity matrix A is computed at this step using
the weights in Wi. After the affinity matrix is computed, we project the affinity vector for
each track onto the 20 largest eigenvectors of A. We append the average spatial location of
each track to its feature vector for k-means clustering.

selected. In most cases, these key points should lie on a stationary background, but for
specialized uses such as de-animation (Chapter 3), these key points may lie on a subject of
interest.

Most video stabilization algorithms automatically prune tracks using RANSAC [42] to
remove outlier tracks by fitting homographies between frames. While this approach gives
acceptable results for simple scenes, selecting appropriate tracks for scenes with multiple
moving objects can be difficult for an automatic algorithm.

Our solution is to have the user improve track selection by clicking on tracks to include or
exclude when they are overlaid on the video. Note that we also automatically prune tracks
using the technique described in Bundled Paths [77]. We cluster tracks based on affinities
of their trajectories and average spatial location across time to alleviate the tedious task of
selecting individual tracks for the user. A full cluster can be selected or de-selected with
a single mouse click. Since clusters of tracks usually belong to the same object or region,
the user can quickly ensure that selected tracks are now properly tracking the background.
Tracks that should not be selected often have erratic trajectories in the warped video as
their trajectories are not well explained by the camera motion, or they lie on dynamic
objects (Figure 5.4).

Track Clustering

Track trajectories are usually short for handheld videos due to occlusions and dynamic scene
content. Non-negative matrix factorization (NMF) [26] seeks a low dimensional motion

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 64

basis that explains the speed and direction of the track trajectories for the entire video while
handling incomplete track trajectories. However, a full factorization of all the incomplete
track trajectories can take up to 6 minutes for a 10 second video. For our user-in-the-loop
approach it is crucial that the factorization runs within about a minute on standard consumer
hardware.

There are three main parts to our approach for track clustering. First, we construct
the velocity profile V which stores the magnitude and directions for each track k over all
frames. Second, we compute an affinity matrix A which measures the similarity between track
trajectories using a moving non-negative matrix factorization that is faster than factoring V
directly. Finally, we reduce the dimension of the affinity vector for each track by projecting
it onto the eigenvectors of A. We cluster the tracks using the reduced feature vectors and
their average spatial location with k-means. Figure 5.3 illustrates the three steps of our
approach, and we consider each one in turn.

Velocity Profile

The first step is to compute the velocity profile V . If the video has T frames and K total
tracks, then matrix V is size 3(T − 1)×K. The velocity profile captures the instantaneous
magnitude and direction of each track k. The kth column of V is:

V k = [mk
1, · · · ,mk

T−1, c
k
1, · · · , ckT−1, s

k
1, · · · , skT−1]T (5.2)

where mk
t is the magnitude of the velocity of the kth track from frame t to t + 1, while ckt

and skt are the cosine and sine of the angle of the kth track. We add 1 to ckt and skt to make
the entries of V positive and we enter zeros into V to handle missing data at any particular
frame. Figure 5.3 shows the structure of a typical velocity profile V .

Moving Window Factorization and Affinity Matrix

Non-negative matrix factorization seeks to factor V into its motion basis S and the corre-
sponding weights W . The affinity matrix A of size K ×K measures the similarity between
all tracks in the video using their weights computed in W . However, the velocity profile is
usually sparse because tracks in handheld videos are short as seen in Figure 5.3. Therefore
the computation can be sped up by first breaking V into windows and factoring each window
separately.

The entries of sub-matrix Vi correspond to velocity profiles of tracks that exist from frame
i ∗ b to (i + 2) ∗ b, where b is the step size. For our application, we set b to 10. In other
words, our window size is 20 and the windows overlap by 10 frames as we move the window.
To create the windowed Vi, we simply select the appropriate rows from V (Figure 5.3) and
discard any empty columns. We factor each Vi into its motion basis Si and the corresponding
weights Wi. The overlapping windows help to maintain coherence in the estimated motion
basis Si. We compute affinities between tracks in each sub-matrix Vi using Wi and update
the overall affinity matrix A accordingly, as described later in equation 5.4.

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 65
In

iti
al

 S
el

ec
tio

n
U

se
r S

el
ec

tio
n

Figure 5.4: We cluster and visualize the selected tracks. Each cluster of tracks is assigned
a bright color and their trajectories are overlaid on the warped video. Notice how tracks on
dynamic objects can have an erratic appearance. The user then removes some clusters by
clicking on the clusters to toggle them off. Tracks that are not used for the next warp are
shown in light grey.

We seek to factorize Vi into non-negative matrices Si (6b × r) and Wi (r × K̂) that
minimize the following expression:

||Vi − SiWi||2 (5.3)

The matrix Si is the motion basis for the window, and Wi contains the non-negative weights
for constructing the trajectory of the tracks using the basis Si. K̂ is the number of tracks
that exist in the window. We use alternating least-squares [45] to find Si and Wi using the
the algorithm described by Cheriyadat et al. [26]. We set the number of terms r to be 6 for
our purposes as we expect a sparse set of motion basis vectors will be sufficient to represent
the motions within a short window.

We can compute the affinity matrix A after the matrices Wi are computed. Let Φq,s be
the set of indices of the matrices Wi that contain track q and s. Also, let wi(q) be the column
of Wi containing the weights of the qth track in the ith window. The affinity between two
tracks q and s is computed as follows:

Aqs =
1

|Φq,s|
∑
i∈Φq,s

exp(
−||wi(q)− wi(s)||2

σ
) (5.4)

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 66

In other words, the affinity score between two tracks is the average affinity score computed
over the windows where both tracks exist. We set σ to 5.0.

Our approach does not gives us the same affinity matrix as that obtained from a direct
factorization of V , without breaking into windows. In particular, in our approach, tracks
which do not exist on the same frame will have an affinity score of 0. This implicitly
enforces tracks which do not overlap temporally to be clustered into different clusters. We
compare and discuss our clustering results and performance using our approach against direct
factorization in the results section.

Clustering

The qth row of the affinity matrix is the affinity vector for the qth track. Instead of using the
affinity vector to cluster the tracks directly, we reduce the dimension of the affinity vector by
projecting it onto the 20 largest eigenvectors of A to reduce computation costs for clustering.
In practice, the reduced feature vector is the row of the set of eigenvectors corresponding
to each track. This reduced feature vector for track q is combined with the average spatial
location of the track across time to form a length 22 vector. (The average spatial location is
normalized by the width of the video and multiplied by 15.) We use k-means clustering with
the number of clusters set to be the number of frames T . Examples for our track clustering
are shown in Figure 5.4.

Track Visualization

Each track is drawn as a red square on the frame with its entire trajectory drawn as a line
on the warped video (Figure 5.4). Selected tracks are displayed in bright colors, with each
track cluster receiving a unique color. Tracks which are pruned and not used to guide the
warp are displayed as pink squares with their trajectory in light grey.

The user interacts with the track clusters by clicking on them when the warped tracks
are displayed. We find the closest track cluster to the mouse and highlight it in real-time.
The user can toggle the track cluster by clicking on it to either include or exclude the cluster
from guiding the warp. Once she is happy with her modifications, we stabilize the video
with the user-selected tracks.

Occasionally, the user might wish finer-grain control to make edits within a cluster, or
to refine the output of the clustering algorithm. We allow them to remove and turn on/off
specific tracks from within a cluster.

5.4 Specifying Region Warps

Videos stabilized with tracks on the background might still be undesirable for a user like
the example shown in Figure 5.1(d), where the background structures are tilted. In general,
since the baseline stabilization algorithm does not have any semantic information of the

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 67

content in the video, it might warp the frames in a way that the user finds undesirable. Our
solution is to allow the user to directly specify how regions in the frame should deform. We
then use the user specifications to guide a new optimization with new temporal weights that
propagates the user edits. This new optimization tries to find a stabilized video that is close
to the previous stabilized result yet conforms to the user-specified constraints as shown in
Figure 5.1(b).

User Interface

The user scrubs through the video to find an offending frame she wishes to correct. We show
the entire warped frame without cropping to allow the user to access the extreme edges of
the warped frame. A green outline is overlaid to provide a visual cue on the boundaries of
the initial frame size as shown in Figure 5.1(e-f).

The user draws a quadrilateral around the region she wishes to correct by clicking on
the four corners of the region. The corners of the quadrilateral can be selected and dragged
to warp the region. The region selected within the quadrilateral is deformed in real-time
to provide feedback for the user as shown in Figure 5.1(f). Arrow keys on the keyboard
translate the region to provide additional control. Note that while only one quadrilateral
is drawn in Figure 5.1(f) which covers the entire frame, the user can draw multiple small
quadrilaterals (which do not cover the entire frame) to make local corrections.

The user can specify how each edited frame will affect neighboring frames. She can
choose to propagate the edit to frames both preceding and succeeding the edited frame (the
default), or only propagate in one direction.

We introduce a global parameter α with which the user can specify the confidence of her
region constraints. If the α value is high, her region constraints have more weight in the
optimization routine when solving for a user-stabilized output. Conversely if the α value is
low, her region constraints can be relaxed to generate a smoother video. We provide two
recommended values for α, 1 and 10 which we found to balance well with the rest of the
energy terms.

Stabilizing Video With User-Constraints

After the user is done specifying region constraints using quadrilaterals and deforming them,
our system derives the user-specified camera path Q(t). It also propagates the constraints
smoothly across time and we achieve this by introducing a window function which modulates
the temporal term in the video stabilization energy function. We also introduce a data term
that controls which frames are penalized if they deviate from the user-specified path Q(t).
The following parts detail how Q(t) is computed, how the energy functions are modified and
how the final stabilized video U(t) is computed.

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 68

User-Specified Camera Path

The user-specified camera path Q(t) incorporates the region constraints the user has drawn.
Therefore, we first identify which grid cells are affected by each region constraint. Grid
cells which have more than 50% of their area within the drawn quadrilateral inherit any
modifications the user makes to the quadrilateral. The kth deformation the user makes
on frame t is represented by a homography Hk(t). We compute Hk(t) by computing the
homography that takes the original four corners of the quadrilateral to the corners of the
modified quadrilateral.

If the user adds no constraints, then Q(t) = P (t). However, if the user modifies regions
by deforming them with the kth quadrilateral, then for grid cell i in frame t, the user-specified
camera path is Qi(t) = Hk(t)Pi(t).

Constraint Propagation

Since the user only specifies region constraints on a sparse set of frames, our algorithm
must propagate the region constraints smoothly over time. Each region constraint is linearly
interpolated to its neighboring frames as shown in Figure 5.5. The linear interpolation is
performed for a maximum of 60 frames centered at the edited frame t, illustrated by the
frames after the blue arrow in Figure 5.5.

We embed this interpolation in the original energy function in equation 5.1. We introduce
a new window function σt which modulates the existing temporal filter ωt,r in equation 5.1 by
replacing ωt,r with σt ·ωt,r. Our window function σt is a linear interpolation weight as shown
in Figure 5.5. We set σt to 1 for the entire window by default. We use the corresponding
linear interpolation weights as illustrated in Figure 5.5 if there are region constraints on
frames within the window.

Warping With Constraints

We would like to reoptimize the stabilized video to find a smooth user-assisted stabilized
video U(t) which respects the user-specified camera path Q(t). We use a similar energy
function O(U(t)) to that in equation 5.1 used to find the initial stabilized video,

O(U(t)) =
∑
t

(1
5
(1− E(t))||U(t)− C(t)||2)

+
∑
t

(5αE(t)||U(t)−Q(t)||2)

+
∑
t

(αλt ·
∑
r∈Ωt

σt · ωt,r(C) · ||U(t)− U(r)||2)

+
∑
t

∑
j∈N(i)

||Ui(t)− Uj(t)||2

(5.5)

The energy function we optimize is similar to equation 5.1. We reduce the weight of the first
term which enforces the final stabilized video to follow the estimated camera motion C(t).
We introduce a new term so that the final stabilized video will follow the user-specified path

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 69

t-25 t t+30t-10

40
40

t1

t1
t1+30t1-30

a

b

b

a

Example of σt for t = t1

Propogation Properties For Edited Frames

t1
t1+30t1-30

1

E(t)

Figure 5.5: Top: The user adds three region constraints on frame t, t− 10 and t− 25. The
dotted lines show how the the region constraints should be linearly propagated. The support
of the interpolation is determined by the proximity of other constraints. If there are region
constraints that are within 30 frames, such as the red-green and green-blue pair, the linear
interpolation is performed within the frames between them. Otherwise, the interpolation is
performed for 30 frames like the blue arrow to the right. The user can also specify one-sided
propagation like the red arrow on the left. Middle: We show an example of our window
function σt for frame t1. Bottom: The function E(t) controls if the new data term is applied
for each frame, allowing frames to follow the user-specified path Q(t) or not.

Q(t). Note that the temporally varying function E(t) controls when the final stabilized video
should be similar to Q(t). Also, ωt,r is replaced with σt · ωt,r and with P (t) replaced with
U(t). The value α (default value is 10) is the global variable which controls the confidence
of the user’s region constraints.

We set E(t) to have a value of 0 for all frames initially. For each frame t that the user
provides an edit, we set E(t) to 1.

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 70

Video A Video B Video C

Video D Video E Video F

The update rule for the Jacobi-based iterative solver [23] is:

U
(ξ+1)
i (t) = 1

γ′ (
1
5
(1− E(t))Ci(t) + 5αE(t)Qi(t)

+
∑
r∈Ωt
r �=t

2λtωt,rσtU
(ξ)
i (t) +

∑
j∈Ni
j �=i

2U
(ξ)
j (t)) (5.6)

where

γ′ = 2λtσt

∑
r∈Ωt
r �=t

ωt,r + 2N(i) +
1

5
(1− E(t)) + 5αE(t)

The (ξ + 1)th iteration of the user-specifed camera path U
(ξ+1)
i (t) is computed with the

update rule in equation 5.6. The initial solution U (0)(t) is initialized with Q(t) and we
use 15 iterations. The transformation D(t) is used to correct Q(t) and it is computed as
D(t) = U(t)Q−1(t).

5.5 Results

We test our system on a collection of very challenging videos and compare our user stabilized
result against the other methods as shown above. Specifically, we compare against our
baseline [77], YouTube’s video stabilizer [50, 51], and Adobe’s warp stabilizer [74, 75]. We
use a MacBook Pro 2013 2.8 Ghz i7 with 16GB of RAM. Our code is unoptimized in C and
Matlab. OpenGL is used to display the video and user interface.

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 71

User Input and Performance.

Depending on the complexity of the video, and desired control over the final output video,
the user typically takes around 10 minutes to select tracks and provide constraints. Our
selection of 6 videos contains severe camera shake with wide field-of-view and large depth
range. This makes our videos very challenging for video stabilization algorithms. We remove
29 track clusters and provide 25 region constraints on average for our videos. The region
constraints are distributed over the length of the entire video. Our results have smoother
camera motion with less background distortion when compared to the other methods. For
detailed comparisons, please see the main video and supplementary videos.

It takes 0.67 seconds per frame (1.5fps) to stabilized the video using the initial baseline
(C(t) and P (t)) and 0.52 seconds per frame (1.9fps) to optimize with user constraints (U(t)).
Our computation for the affinity matrix is on average 12 times faster than using direct
factorization. Our total clustering time on average is 33 seconds. Table 5.1 has the detailed
breakdown of the times and edits.

O
ur

 A
pp

ro
ac

h
Pr

ev
io

us
 W

or
k

Still Frame 1 Still Frame 2A�nity Matrix

Figure 5.6: We compare the clustering result of our method against using the direct factor-
ization of V . Tracks in the same clusters are drawn with the same color. Notice that while
the affinity matrices are different, the quality of the track clusters are similar. In particular,
tracks belonging to the dynamic objects are rarely clustered with the background tracks. In
still frame 1, our result correctly clusters the tracks on the arm with the tracks on the torso.
Also, in still frame 2, our result clusters the tracks on the torso as a single cluster. Our
clustering method is also 12 times faster.

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 72

ID
#

fr
am

es
#

tr
ac

k
s

C
(t

)
P

(t
)

U
(t

)
D

ir
ec

t
A

O
u
r
A

T
ot

al
#

C
lu

st
er

#
R

eg
io

n
C

lu
st

er
in

g
E

d
it

C
on

st
.

A
20

7
16

14
4

38
.9

s
10

2.
9s

10
6.

5
s

22
5.

2
s

14
.8

5
s

30
.1

s
24

23
B

29
8

19
38

5
57

.6
s

14
6.

1
s

15
3.

9
s

15
6.

0
s

17
.7

8
s

44
.6

s
49

23
C

16
7

11
05

0
28

.9
s

79
.2

s
84

.5
s

86
.0

s
10

.4
s

19
.1

s
10

23
D

20
3

15
00

1
34

.8
s

10
3.

9
s

10
3.

6
s

25
3.

36
s

13
.5

s
28

.6
s

23
24

E
31

2
23

93
6

54
.6

s
16

3.
1

s
16

2.
9

s
37

1.
3

s
25

.4
s

60
.5

s
68

36
F

14
7

10
18

6
23

.2
s

73
.8

s
73

.7
s

60
.3

s
8.

7
s

15
.0

s
2

23

T
ab

le
5.

1:
O

u
r

co
m

p
u
ta

ti
on

ti
m

es
fo

r
ou

r
ex

am
p
le

s
as

w
el

l
as

th
e

n
u
m

b
er

of
u
se

r
ed

it
s.

N
ot

ic
e

th
at

ou
r

m
et

h
o
d

fo
r

co
m

p
u
ti

n
g

th
e

affi
n
it

y
m

at
ri

x
is

on
av

er
ag

e
12

ti
m

es
fa

st
er

.
O

u
r

av
er

ag
e

cl
u
st

er
in

g
ti

m
e

is
33

se
co

n
d
s.

C
om

p
u
ti

n
g

th
e

b
as

el
in

e
v
id

eo
st

ab
il
iz

at
io

n
ta

ke
s

0.
67

se
co

n
d
s

p
er

fr
am

e
(1

.5
fp

s)
.

O
p
ti

m
iz

in
g

fo
r

ou
r

u
se

r-
as

si
st

ed
v
id

eo
ta

ke
s

0.
52

se
co

n
d
s

p
er

fr
am

e
(1

.9
fp

s)
.

O
n

av
er

ag
e

th
e

u
se

r
re

m
ov

es
29

cl
u
st

er
s

an
d

p
ro

v
id

es
25

re
gi

on
co

n
st

ra
in

ts
.

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 73

Quality of Track Clustering.

Factoring the velocity profile matrix directly can be computationally intensive since the size
of V can be up to 1000 × 20000 for our examples. Our method clusters small overlapping
windows of Vi instead and computes affinities based on local weights Wi from local motion
bases Si as described in Section 5.3. While the affinities computed with the two techniques
are different, the clustering results are similar as shown in Figure 5.6.

Notice that in both methods, the tracks on dynamic objects are rarely clustered with
the background tracks. In still frame 1, our method clusters tracks on the subject’s arm on
the right with the torso while the previous work clusters them with the background. In still
frame 2, our method successfully clusters tracks on the torso as a single cluster.

In addition, our approach assigns tracks that do not exist in the same frame an affinity
score of 0. As a result, the likelihood of tracks that do not exist on the same frame being
assigned the same cluster is much lower than the previous approach.

Quality of Stabilization.

There are two ways the user can improve video stabilization in our framework. First by
improving track selection, and second, by adding additional region constraints. In Figure 5.7,
the use of user-selected tracks reduces distortion in both examples. In the top example, the
horizontal stretch of the subject is reduced after using the appropriate tracks for stabilization.
In the bottom example, the walls of the building on the left, after using user-selected tracks,
have less skew than the initial baseline. For video comparisons please see the supplementary
videos.

When proper track selection is not sufficient to improve the stabilization results, the
user can correct distortions directly as shown in the example in Figure 5.8. The user drawn
constraints are on the right and are applied to frame 150. Notice that after stabilizing
the video with the user constraints, the neighboring frames inherit the user modifications
properly. However, in some cases, slight wobbles are introduced in the video after correcting
for distortions.

In Figure 5.9, we compare video stills from the baseline stabilization against correspond-
ing frames after the user-specified constraints are used to stabilize the video. Notice that in
both examples, the stabilized video with user-constraints has milder distortions as vertical
structures in the scene remain vertical. In Figure 5.10- 5.15, we show selected still frames to
compare the quality of stabilization between the baseline stabilization and our final result.
Notice that for the examples, our result has upright facades and subjects are less distorted.
For better comparison for all results, please see our main video and supplementary videos.

Since the quality of the stabilized video is strongly correlated with the user constraints,
the more constraints the user provides across the frames, the better the stabilized video will
be. Our results are generated with a set of user constraints across the video to correct for
distortion and camera paths. Note that if the user only wishes to fix major artifacts in
isolated regions, she only would have to provide constraints in those regions.

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 74

Baseline Stabilization Stabilization With
User-Selected Tracks

Figure 5.7: Comparison of initial baseline with result using user-selected tracks. The face
and torso of the subject have less horizontal stretch in the top example. The walls of the
buildings on the left are less skewed in the bottom example.

Limitations.

While our method allows the user to have control over how the stabilized video will look,
our system will not generate good results if the quality of the user constraints is bad. In
particular, if the user constraints significantly deviate from the camera path and are in
conflict, the output video will be jerky. Our system does not infer the intent of the user. For
example, if the user wants to level the horizon in the stabilized video, she would still have to
manually correct regularly spaced frames as opposed to just specifying her intent. However,
there is also a drawback to our method; in some cases, new artifacts are introduced in the
effort to reduce existing artifacts.

5.6 Conclusion and Future Work

We have demonstrated that our system can improve video stabilization by allowing the user
to customize the result to her preferences. The two modes of interactions, track selection and

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 75

Frame 147 Frame 150 Frame 153 User Constraint

Be
fo

re
 C

on
st

ra
in

ts
A

ft
er

 C
on

st
ra

in
ts

Figure 5.8: Before region constraints were applied (top row), the frame is skewed. The region
constraint is drawn on frame 150 and it corrects for this deformation. The red arrows show
the change in the quadrilateral drawn in white for the region constraint. After the video is
stabilized with the constraints, note that the neighboring frames are corrected appropriately
as the background is upright and there are fewer distortions.

region specification, directly relate to how automatic stabilization algorithms work. With a
set of correctly selected tracks and region constraints, the output video exhibits smoother
motion while respecting the user’s intent.

One avenue for future work is to explore how more tools can be used for improving
stabilization. For example, higher level controls such as automatic vertical and horizontal
rectification could be explored to minimize the user interaction needed. Similarly, the user
could also potentially specify constraints by providing exemplar frames and the algorithm
could compute the transformations necessary to match scene properties such as vanishing
points. Finally, there is definitely room for improvement as our technique might introduce
unwanted artifacts such as small wobbles in the final result.

In this chapter, we have presented a new end-to-end system that allows users to improve
automatic video stabilization algorithms. While our system still has artifacts in the output
video, we believe that this is a first step towards video stabilization algorithms that leverage
user guidance and expertise to solve for a stabilized output, beyond the capabilities of fully
automatic methods.

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 76

Baseline Stabilization Stabilization With User-Constraints

Figure 5.9: Comparision of initial baseline with result using user constraints. In all examples
on the left, the baseline stabilization is not satisfactory as the scene is distorted and the
horizon is not level. The same frames in our result are less distorted as the structures are
vertical.

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 77
In

pu
t V

id
eo

Ba
se

lin
e

O
ur

 R
es

ul
t

Frame 4 Frame 114 Frame 214 Frame 303

Figure 5.10: Notice that in our result, frame 4, 114 and 214 have facades that are more
vertical compared to the baseline stabilization. In particular, the baseline stabilization did
not correct for the slow rotation for the camera in frame 303 while our method corrects for
it as the user specified that the rotation should be removed.

In
pu

t V
id

eo
Ba

se
lin

e
O

ur
 R

es
ul

t

Frame 56 Frame 108 Frame 144 Frame 189

Figure 5.11: In this example, the baseline stabilization skews the subject towards the end
of the video as tracks from other moving people are selected. In our result, the skew of the
subject is drastically reduced. Notice that the facades are vertical in our result as well.

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 78
In

pu
t V

id
eo

Ba
se

lin
e

O
ur

 R
es

ul
t

Frame 3 Frame 36 Frame 126 Frame 194

Figure 5.12: In this example, the skew of the sandcastle is distracting in the baseline stabi-
lization. Our result correctly preserves the shape of the sandcastle.

In
pu

t V
id

eo
Ba

se
lin

e
O

ur
 R

es
ul

t

Frame 8 Frame 114 Frame 219 Frame 278

Figure 5.13: The suddenly jerk in the video at frame 114 results in the left facade being
heavily distorted in the baseline stabilization. Notice how our result reduces the distortion.

CHAPTER 5. USER-ASSISTED VIDEO STABILIZATION 79
In

pu
t V

id
eo

Ba
se

lin
e

O
ur

 R
es

ul
t

Frame 3 Frame 43 Frame 73 Frame 143

Figure 5.14: Our result for this example exhibits fewer distortions and the vertical structures
largely remain vertical compared to the baseline result.

In
pu

t V
id

eo
Ba

se
lin

e
O

ur
 R

es
ul

t

Frame 3 Frame 43 Frame 123 Frame 163

Figure 5.15: Notice how subjects and faces in the baseline results are skewed in either
direction due to the extreme shake of the camera. In our result, these distortions are more
pleasing to the eye as structures are largely vertical and pedestrians are not skewed.

80

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have demonstrated how computation along with user-desired goals can gen-
erate output media that better express what the creator experienced when she captured the
input video. In De-animation, our system is able to isolate finer-scale motions by removing
large-scale motions and compositing them into a still image by leveraging on technologies
such as image warps and graph-cuts. The flexibility of our system is that it is goal driven, as
the user has control over what the algorithm will optimize. This allows the user to produce
surreal results that are captivating and better express the moment than the input video. Our
system can also be used as a tool for visualizing motion as it isolates a target motion from
the rest of the video. We have also demonstrated that our system allows new approaches for
video editing tasks on moving objects.

When we restrict the domain of input videos to only portraits and assume that the goal
is to create portrait cinemagraphs, we show that it is possible to automatically generate
convincing results with input videos from DSLRs and handphones. We leverage on facial
feature detection algorithms to estimate local areas of motion and composite them into a
still image using automatically generated constraints. Our fully automatic system generates
results within 30 seconds and we think that our system is a viable option to produce portraits
for everyday use.

Video stabilization is a useful tool to help remove camera shake to improve the quality
of the video. However for extremely challenging videos, automatic algorithms struggle to
generate good results without distorting the scene. We show that by using user guidance
in the form of correcting erroneous frames and improving track selection, we can generate
a better stabilized output video. Our user-assisted video stabilization tool uses user-input
as constraints to help guide an new camera path that satisfies her desires. In particular,
the facades in our output videos are not distorted, camera motion is smoother, horizons are
rectified, and low frequency camera sways are removed.

In summary, we believe new algorithms for video (and photo) editing should be designed

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 81

to take into user’s goals and/or media content into account. This allows higher-level editing
operations to be performed by novice users without expert knowledge in video editing soft-
ware. In our work, we developed end-to-end systems that allow users to create high quality
results for de-animation, cinemagraphs, and video stabilization without professional video
editing software and tedium. We hope that our work inspires continued progress in creating
easy-to-use tools to empower novice users to create high-quality content.

6.2 Future Work

There are specific areas for improvement for each of our systems. However, in general there
are other areas where video content should be used to inform video editing operations.

Current video stabilization algorithms only seek to stabilize the footage by removing
camera shake. While some algorithms attempts to emulate cinematic rules by constraining
the output video to have either specific camera paths such as linear or parabolic, there has
been little effort in constraining the output video based on its content. Specifically, video
cropping or video retargeting can be jointly optimized with video stabilization. Professional
videos do not only have pleasant camera paths; they are also aesthetically pleasing. One
future work would be to use common rules of thumb for video aesthetics as a guideline for
video stabilization and cropping.

Another application for content-based video stabilization and cropping is for ultra-wide
angle head mounted cameras. While these cameras capture everything from the point of
view of a person, they do not capture what the person is actually focusing on. For example,
a person might track a subject of interest with his eyes and not with his head. A content-
based video stabilization and cropping might generate a stabilized video crop that follows
what the person is focusing on instead of just stabilizing the shaky video.

Head mounted video cameras not only capture live action, but also possibly have large
pose variations due to quick head motions. These quick pose transitions can be difficult to
stabilize and can be disorientating for a viewer. One interesting direction of future work
would be to explore ways to convey the action as well as the pose change by using suitable
transition frames.

While having a high quality footage is useful for telling stories, it is often more important
to have a sequence of multiple video clips to convey a moment. Unfortunately, there has
been minimal research on how sequences of different clips could be automatically combined
to better tell a story with pleasing results. Interaction with audio voice overs and graphical
animations could also help to better convey the moment. As such, tools to aid novice users
to composite clips with audio for story telling is a future work.

Videos are essentially a sequence of photographs taken consecutively which samples the
scene at reular time intervals. An interesting direction would be to design a system that
allows the user to modify the exposure of an output photograph based on a video of the
scene. This manipulated exposure can also vary spatially to create images that cannot be

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 82

captured with a regular camera. One benefit of this is that long exposure photography can
be taken without the use of a tripod.

6.3 De-animation

Our system to de-animate videos at the moment requires a significant amount of computa-
tion. In particular, it still takes several minutes on a desktop to compute a result. It will
be challenging and useful to find computationally efficient methods while achieving similar
results. This will greatly reduce the time it takes for each result which will allow the user
to iterate and explore different goals interactively. With an efficient algorithm, the system
can also be implemented on mobile devices which will allow everyday users to capture and
create de-animated videos easily.

The algorithm minimizes several energy functions in succession as it computes an initial
and then a refined warp, and then a composite. If the problem of de-animation is modeled as
a single energy function, the computation required might be reduced. More importantly, the
current system has the warping and compositing as two different stages with no interaction
between them. As such, it is likely that our solution is a local minimum. One interesting
work would be to jointly optimize the warp and composition to give a better result.

The user strokes that are required to create high quality results are dependent on the
skill of the user. In some cases, this might be difficult for a novice user to use our system.
While we have addressed the class of portrait videos with our followup work, there are other
approaches that should be considered. For example, suggestions of regions that can be de-
animated can be computed and provided to the user. Also, the user strokes that are used in
our algorithm are hard constraints. This makes the system very sensitive to small changes
to the input. One future work would be to explore how to allow mistakes in the user input
by using soft constraints.

6.4 Portrait Cinemagraphs

The limitation of our system is that only facial features are animated in our final output. One
avenue for future work would be to automatically detect and composite additional moving
regions such as cloth or hair onto the final cinemagraph. As these regions are much more
difficult to handle, one alternative would be to synthesize subtle motions in these regions
using a motion database.

The cinemagraph portraits may be unnerving for some viewers as the head is static while
the facial features are animated. One solution to remedy this is to add small motions back
onto the head so that the results appears more natural. As an extension, new motions can
also be synthesized by leveraging on a large database of human facial expressions.

An extension to allow pose changes will admit longer and more interesting cinemagraphs
to be created. This can be achieved by first solving for good cinemagraphs for each pose,

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 83

and generating suitable pose transition frames.

6.5 Video Stabilization

We have shown that video stabilization can be improved by using information about how
the scene should look like from the user. There are several areas for improvement from our
current system. Drawing quads can be unintuitive for casual users as there is a large degree
of freedom. Simpler techniques such as drawing horizon lines or building facades might be
easier. In fact, computer vision techniques to detect horizon lines, people, and building
facades can be utilized to provide information instead of depending on a user. This might
allow the next generation of scene-aware automatic video stabilization algorithms to perform
better than our user-assisted system.

84

Bibliography

[1] url: http://cinemagraphs.com.

[2] url: http://www.filmindustrynetwork.biz/nyc-photographer-jamie-beck-ci
nemagraph/12173.

[3] url: http://kinotopic.com.

[4] url: http://cinemagr.am.

[5] url: http://www.icinegraph.com.

[6] Aseem Agarwala et al. “Interactive digital photomontage”. In: ACM Transactions on
Graphics 23.3 (Aug. 2004), pp. 294–302.

[7] Aseem Agarwala et al. “Panoramic video textures”. In: ACM Transactions on Graph-
ics 24.3 (Aug. 2005), pp. 821–827.

[8] Jackie Assa, Yaron Caspi, and Daniel Cohen-Or. “Action synopsis: pose selection and
illustration”. In: ACM Transactions on Graphics 24.3 (Aug. 2005), pp. 667–676.

[9] Shai Avidan and Ariel Shamir. “Seam carving for content-aware image resizing”. In:
ACM Transactions on graphics (TOG). Vol. 26. 3. ACM. 2007, p. 10.

[10] Jiamin Bai et al. “A dual theory of inverse and forward light transport”. In: Computer
Vision–ECCV 2010. Springer, 2010, pp. 294–307.

[11] Jiamin Bai et al. “Automatic Cinemagraph Portraits”. In: Computer Graphics Forum
(EGSR 2013) (2013).

[12] Jiamin Bai et al. “Selectively De-Animating Video”. In: ACM Transactions on Graph-
ics (2012).

[13] Jiamin Bai et al. “User-Assisted Video Stabilization”. In: Computer Graphics Forum
(EGSR 2014) (2014). url: http://graphics.berkeley.edu/papers/Bai-UVS-201
4-06/.

[14] Xue Bai et al. “Video SnapCut: Robust Video Object Cutout Using Localized Clas-
sifiers”. In: ACM Transactions on Graphics 28.3 (July 2009), 70:1–70:11.

[15] Connelly Barnes et al. “PatchMatch: A randomized correspondence algorithm for
structural image editing”. In: ACM Transactions on Graphics-TOG 28.3 (2009), p. 24.

BIBLIOGRAPHY 85

[16] Connelly Barnes et al. “Video Tapestries with Continuous Temporal Zoom”. In: ACM
Transactions on Graphics 29.4 (July 2010), 89:1–89:9.

[17] Herbert Bay et al. “Speeded-Up Robust Features (SURF)”. In: Comput. Vis. Image
Underst. 110.3 (June 2008), pp. 346–359. issn: 1077-3142.

[18] Eric P. Bennett and Leonard McMillan. “Computational Time-Lapse Video”. In:
ACM Transactions on Graphics 26.3 (July 2007), 102:1–102:6.

[19] M. Bertalmio et al. “Simultaneous structure and texture image inpainting”. In: Image
Processing, IEEE Transactions on 12.8 (2003), pp. 882–889. issn: 1057-7149. doi:
10.1109/TIP.2003.815261.

[20] Marcelo Bertalmio et al. “Image Inpainting”. In: Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’00. New
York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000, pp. 417–424.
isbn: 1-58113-208-5. doi: 10.1145/344779.344972. url: http://dx.doi.org/10.1
145/344779.344972.

[21] Floraine Berthouzoz, Wilmot Li, and Maneesh Agrawala. “Tools for placing cuts
and transitions in interview video”. In: ACM Transactions on Graphics (TOG) 31.4
(2012), p. 67.

[22] Yuri Boykov, Olga Veksler, and Ramin Zabih. “Fast Approximate Energy Minimiza-
tion via Graph Cuts”. In: IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 23.11 (Nov. 2001), pp. 1222–1239. issn: 0162-8828. doi: 10.1109/34.969114.
url: http://dx.doi.org/10.1109/34.969114.

[23] I. N. Bronshtein and K. A. Semendyayev. Handbook of Mathematics (3rd Ed.) Ed. by
K. A. Kirsch. London, UK, UK: Springer-Verlag, 1997. isbn: 3-540-62130-X.

[24] Thomas Brox and Jitendra Malik. “Object segmentation by long term analysis of
point trajectories”. In: European Conference on Computer Vision (ECCV). Lecture
Notes in Computer Science. Springer, 2010.

[25] Yaron Caspi et al. “Dynamic stills and clip trailers”. In: The Visual Computer 22.9-10
(2006), pp. 642–652.

[26] Anil Cheriyadat and Richard J. Radke. “Non-negative matrix factorization of partial
track data for motion segmentation”. In: ICCV. 2009, pp. 865–872.

[27] Pei-Yu Chi et al. “Democut: generating concise instructional videos for physical
demonstrations”. In: Proceedings of the 26th annual ACM symposium on User in-
terface software and technology. ACM. 2013, pp. 141–150.

[28] Taeg Sang Cho et al. “The patch transform and its applications to image editing”.
In: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on. IEEE. 2008, pp. 1–8.

BIBLIOGRAPHY 86

[29] Yung-Yu Chuang et al. “A bayesian approach to digital matting”. In: Computer Vi-
sion and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Com-
puter Society Conference on. Vol. 2. IEEE. 2001, pp. II–264.

[30] Yung-Yu Chuang et al. “Animating pictures with stochastic motion textures”. In:
ACM Transactions on Graphics 24.3 (Aug. 2005), pp. 853–860.

[31] Yung-Yu Chuang et al. “Video Matting of Complex Scenes”. In: ACM Transactions
on Graphics 21.3 (July 2002), pp. 243–248.

[32] Michael F. Cohen and Richard Szeliski. “The Moment Camera”. In: Computer 39.8
(2006), pp. 40–45.

[33] Carlos D. Correa and Kwan-Liu Ma. “Dynamic Video Narratives”. In: ACM Trans-
actions on Graphics 29.4 (July 2010), 88:1–88:9.

[34] A Criminisi, P. Perez, and K. Toyama. “Object removal by exemplar-based inpaint-
ing”. In: Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE
Computer Society Conference on. Vol. 2. 2003, II–721–II–728 vol.2. doi: 10 . 110

9/CVPR.2003.1211538.

[35] Antonio Criminisi, P. Perez, and K. Toyama. “Region filling and object removal by
exemplar-based image inpainting”. In: Image Processing, IEEE Transactions on 13.9
(2004), pp. 1200–1212. issn: 1057-7149. doi: 10.1109/TIP.2004.833105.

[36] Soheil Darabi et al. “Image Melding: Combining Inconsistent Images using Patch-
based Synthesis”. In: ACM Transactions on Graphics (TOG) (Proceedings of SIG-
GRAPH 2012) 31.4 (2012), 82:1–82:10.

[37] Paul E Debevec and Jitendra Malik. “Recovering high dynamic range radiance maps
from photographs”. In: ACM SIGGRAPH 2008 classes. ACM. 2008, p. 31.

[38] Alexei A. Efros and William T. Freeman. “Image Quilting for Texture Synthesis
and Transfer”. In: Proceedings of SIGGRAPH 2001. Computer Graphics Proceedings,
Annual Conference Series (2001). Ed. by Eugene Fiume, pp. 341–346.

[39] Alexei A. Efros and Thomas K. Leung. “Texture Synthesis by Non-parametric Sam-
pling”. In: IEEE International Conference on Computer Vision. Corfu, Greece, 1999,
pp. 1033–1038.

[40] Ehsan Elhamifar and Ren Vidal. “Sparse subspace clustering”. In: In CVPR. 2009.

[41] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Distance transforms of sampled
functions. Tech. rep. Cornell Computing and Information Science, 2004.

[42] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Cartography”.
In: Commun. ACM 24.6 (June 1981), pp. 381–395. issn: 0001-0782.

[43] Martin A. Fischler and Robert C. Bolles. “Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography”. In:
Commun. ACM 24.6 (June 1981), pp. 381–395. issn: 0001-0782.

BIBLIOGRAPHY 87

[44] Matthieu Fradet, Philippe Robert, and Patrick Pérez. “Clustering Point Trajectories
with Various Life-Spans”. In: Proceedings of the 2009 Conference for Visual Media
Production. CVMP ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 7–
14. isbn: 978-0-7695-3893-8.

[45] K. Ruben Gabriel and S. Zamir. “Lower Rank Approximation of Matrices by Least
Squares with Any Choice of Weights”. In: Technometrics 21.4 (1979), pp. 489–498.

[46] Michael L. Gleicher and Feng Liu. “Re-cinematography: Improving the Camera Dy-
namics of Casual Video”. In: Proceedings of the 15th International Conference on
Multimedia. MULTIMEDIA ’07. Augsburg, Germany: ACM, 2007, pp. 27–36. isbn:
978-1-59593-702-5.

[47] Dan B Goldman et al. “Schematic storyboarding for video visualization and editing”.
In: ACM Transactions on Graphics 25.3 (July 2006), pp. 862–871.

[48] Amit Goldstein and Raanan Fattal. “Video Stabilization using Epipolar Geometry”.
In: ACM Trans. Graph. 32.5 (2012).

[49] M. Grosse et al. “Coded Aperture Projection”. In: ACM Trans. Graph. 29.3 (2010),
pp. 1–12.

[50] Matthias Grundmann, Vivek Kwatra, and Irfan Essa. “Auto-Directed Video Stabi-
lization with Robust L1 Optimal Camera Paths”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2011). 2011.

[51] Matthias Grundmann et al. “Calibration-Free Rolling Shutter Removal”. In: Inter-
national Conference on Computational Photography [Best Paper]. 2012.

[52] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Second.
Cambridge University Press, ISBN: 0521540518, 2004.

[53] James Hays and Alexei A Efros. “Scene Completion Using Millions of Photographs”.
In: ACM Transactions on Graphics (SIGGRAPH 2007) 26.3 (2007).

[54] Felix Heide et al. “Diffuse Mirrors: 3D Reconstruction from Diffuse Indirect Illumi-
nation Using Inexpensive Time-of-Flight Sensors”. In:

[55] Felix Heide et al. “Light-in-flight: Transient Imaging Using Photonic Mixer Devices”.
In: ACM SIGGRAPH 2013 Emerging Technologies. SIGGRAPH ’13. Anaheim, Cal-
ifornia: ACM, 2013, 9:1–9:1. isbn: 978-1-4503-2340-6. doi: 10.1145/2503368.25033
77. url: http://doi.acm.org/10.1145/2503368.2503377.

[56] Y. Hitomi et al. “Video from a Single Coded Exposure Photograph using a Learned
Over-Complete Dictionary”. In: IEEE International Conference on Computer Vision
(ICCV). 2011.

[57] Jia-Bin Huang et al. “Image Completion Using Planar Structure Guidance”. In: ACM
Trans. Graph. 33.4 (July 2014), 129:1–129:10. issn: 0730-0301. doi: 10.1145/26010
97.2601205. url: http://doi.acm.org/10.1145/2601097.2601205.

BIBLIOGRAPHY 88

[58] Arjun Jain et al. “MovieReshape: Tracking and Reshaping of Humans in Videos”. In:
ACM Trans. Graph. (Proc. SIGGRAPH Asia 2010) 29.5 (2010).

[59] Neel Joshi et al. “Cliplets: juxtaposing still and dynamic imagery”. In: Proceedings
of the 25th annual ACM symposium on User interface software and technology. UIST
’12. Cambridge, Massachusetts, USA, 2012, pp. 251–260. isbn: 978-1-4503-1580-7.

[60] Alexandre Karpenko et al. “Digital Video Stabilization and Rolling Shutter Correction
using Gyroscopes”. In: In Stanford CS Tech Report. 2011.

[61] Natasha Kholgade et al. “3D Object Manipulation in a Single Photograph using Stock
3D Models”. In: ACM Transactions on Computer Graphics 33.4 (2014).

[62] B. Kim and I. Essa. “Video-based nonphotorealistic and expressive illustration of
motion”. In: Computer Graphics International 2005. 2005.

[63] Gustav Kirchhoff. “Ueber das Verhältniss zwischen dem Emissionsvermögen und dem
Absorptionsvermögen der Körper für Wärme und Licht”. In: Annalen der Physik
185.2 (1860), pp. 275–301.

[64] Dilip Krishnan and Rob Fergus. “Dark flash photography”. In: ACM Transactions
on Graphics, SIGGRAPH 2009 Conference Proceedings. Vol. 28. 2009.

[65] Vivek Kwatra et al. “GraphCut Textures: Image and Video Synthesis Using Graph
Cuts”. In: ACM Transactions on Graphics 22.3 (July 2003), pp. 277–286.

[66] Anat Levin, Dani Lischinski, and Yair Weiss. “A closed-form solution to natural image
matting”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 30.2
(2008), pp. 228–242.

[67] Anat Levin et al. “4D frequency analysis of computational cameras for depth of field
extension”. In: ACM Transactions on Graphics (TOG). Vol. 28. 3. ACM. 2009, p. 97.

[68] Anat Levin et al. “Image and depth from a conventional camera with a coded aper-
ture”. In: ACM Transactions on Graphics (TOG). Vol. 26. 3. ACM. 2007, p. 70.

[69] Marc Levoy and Pat Hanrahan. “Light field rendering”. In: Proceedings of the 23rd an-
nual conference on Computer graphics and interactive techniques. ACM. 1996, pp. 31–
42.

[70] Tommer Leyvand et al. “Data-Driven Enhancement of Facial Attractiveness”. In:
ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2008) 27.3 (Aug.
2008).

[71] Zicheng Liao, Neel Joshi, and Hugues Hoppe. “Automated Video Looping With Pro-
gressive Dynamism”. In: ACM Transactions on Graphics (2013).

[72] Ce Liu. “Beyond Pixels: Exploring New Representations and Applications for Motion
Analysis”. PhD thesis. Massachusetts Institute of Technology, May 2009.

[73] Ce Liu et al. “Motion magnification”. In: ACM Transactions on Graphics 24.3 (Aug.
2005), pp. 519–526.

BIBLIOGRAPHY 89

[74] Feng Liu et al. “Content-Preserving Warps for 3D Video Stabilization”. In: ACM
Transactions on Graphics 28.3 (July 2009), 44:1–44:9.

[75] Feng Liu et al. “Subspace Video Stabilization”. In: ACM Trans. Graph. 30.1 (Feb.
2011), 4:1–4:10. issn: 0730-0301.

[76] Feng Liu et al. “Subspace Video Stabilization”. In: ACM Transactions on Graphics
30.1 (Jan. 2011), 4:1–4:10.

[77] Shuaicheng Liu et al. “Bundled Camera Paths for Video Stabilization”. In: ACM
Trans. Graph. 32.4 (July 2013), 78:1–78:10. issn: 0730-0301.

[78] Bruce D. Lucas and Takeo Kanade. “An Iterative Image Registration Technique with
an Application to Stereo Vision”. In: International Joint Conference on Artificial
Intelligence (1981).

[79] Yasuyuki Matsushita et al. “Full-frame video stabilization with motion inpainting”.
In: IEEE Trans. Patt. Anal. Mach. Intell (2006), pp. 1150–1163.

[80] Audrey R Nath and Michael S Beauchamp. “A neural basis for interindividual dif-
ferences in the McGurk effect, a multisensory speech illusion”. In: Neuroimage 59.1
(2012), pp. 781–787.

[81] Shree K Nayar et al. “Fast separation of direct and global components of a scene using
high frequency illumination”. In: ACM Transactions on Graphics (TOG). Vol. 25. 3.
ACM. 2006, pp. 935–944.

[82] Ren Ng et al. “Light field photography with a hand-held plenoptic camera”. In: Com-
puter Science Technical Report CSTR 2.11 (2005).

[83] Matthew O’Toole et al. “Temporal frequency probing for 5D transient analysis of
global light transport”. In: ACM Trans. Graph. 33.4 (2014), p. 87. doi: 10.1145/26
01097.2601103. url: http://doi.acm.org/10.1145/2601097.2601103.

[84] Amy Pavel, Björn Hartmann, and Maneesh Agrawala. “Video digests: a browsable,
skimmable format for informational lecture videos”. In: Proceedings of the 27th annual
ACM symposium on User interface software and technology. ACM. 2014, pp. 573–582.

[85] Barbara Pease and Allan Pease. The definitive book of body language. Random House
LLC, 2008.

[86] Patrick Pérez, Michel Gangnet, and Andrew Blake. “Poisson image editing”. In: ACM
Transactions on Graphics (TOG). Vol. 22. 3. ACM. 2003, pp. 313–318.

[87] Georg Petschnigg et al. “Digital photography with flash and no-flash image pairs”.
In: ACM transactions on graphics (TOG). Vol. 23. 3. ACM. 2004, pp. 664–672.

[88] Y. Pritch, E. Kav-Venaki, and S. Peleg. “Shift-Map Image Editing”. In: International
Conference on Computer Vision. Kyoto, 2009.

BIBLIOGRAPHY 90

[89] Yael Pritch, Alex Rav-Acha, and Shmuel Peleg. “Nonchronological Video Synopsis
and Indexing”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
30.11 (Nov. 2008), pp. 1971–1984. issn: 0162-8828. doi: 10.1109/TPAMI.2008.29.
url: http://dx.doi.org/10.1109/TPAMI.2008.29.

[90] Shankar Rao et al. “Motion Segmentation in the Presence of Outlying, Incomplete,
or Corrupted Trajectories”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 32.10 (2010), pp. 1832–1845. issn: 0162-8828.

[91] Ramesh Raskar, Amit Agrawal, and Jack Tumblin. “Coded exposure photography:
motion deblurring using fluttered shutter”. In: ACM Transactions on Graphics (TOG)
25.3 (2006), pp. 795–804.

[92] Alex Rav-Acha et al. “Unwrap Mosaics: A new representation for video editing”. In:
ACM Transactions on Graphics 27.3 (Aug. 2008), 17:1–17:11.

[93] Dikpal Reddy, Jiamin Bai, and Ravi Ramamoorthi. “External mask based depth and
light field camera”. In: ICCV ’13 Workshop Consumer Depth Cameras for Vision
(2013). url: http://graphics.berkeley.edu/papers/Reddy-EMB-2013-12/.

[94] Dikpal Reddy, Ashok Veeraraghavan, and Rama Chellappa. “P2C2: Programmable
pixel compressive camera for high speed imaging”. In: Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on. IEEE. 2011, pp. 329–336.

[95] Michael Rubinstein et al. “Motion Denoising with Application to Time-lapse Photog-
raphy”. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2011), pp. 313–
320.

[96] Jason M. Saragih, Simon Lucey, and Jeffrey F. Cohn. “Deformable Model Fitting
by Regularized Landmark Mean-Shift”. In: Int. J. Comput. Vision 91.2 (Jan. 2011),
pp. 200–215. issn: 0920-5691.

[97] Arno Schödl et al. “Video Textures”. In: Proceedings of ACM SIGGRAPH 2000.
Computer Graphics Proceedings, Annual Conference Series. July 2000, pp. 489–498.

[98] Jianbo Shi and C. Tomasi. “Good features to track”. In: Computer Vision and Pattern
Recognition. 1994, pp. 593 –600. doi: 10.1109/CVPR.1994.323794.

[99] B.M. Smith et al. “Light field video stabilization”. In: Computer Vision, 2009 IEEE
12th International Conference on. 2009, pp. 341–348.

[100] Jian Sun. “Video Stabilization with a Depth Camera”. In: Proceedings of the 2012
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). CVPR ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 89–95. isbn: 978-1-4673-
1226-4.

[101] Jian Sun et al. “Poisson matting”. In: ACM Transactions on Graphics (ToG). Vol. 23.
3. ACM. 2004, pp. 315–321.

BIBLIOGRAPHY 91

[102] Kalyan Sunkavalli et al. “Video snapshots: Creating high-quality images from video
clips”. In: Visualization and Computer Graphics, IEEE Transactions on 18.11 (2012),
pp. 1868–1879.

[103] Gregory P. Sutton and Malcolm Burrows. “Biomechanics of jumping in the flea”.
In: J Exp Biol 214.5 (Mar. 2011), pp. 836–847. doi: 10.1242/jeb.052399. url:
http://dx.doi.org/10.1242/jeb.052399.

[104] Richard Szeliski. Image Alignment and Stitching: A Tutorial. Tech. rep. MSR-TR-
2004-92. Microsoft Research, 2004, p. 89. url: http://research.microsoft.com/a
pps/pubs/default.aspx?id=70092.

[105] Michael W Tao, Micah K Johnson, and Sylvain Paris. “Error-tolerant image com-
positing”. In: International journal of computer vision 103.2 (2013), pp. 178–189.

[106] Michael W Tao et al. “Depth from Combining Defocus and Correspondence Using
Light-Field Cameras”. In: Computer Vision (ICCV), 2013 IEEE International Con-
ference on. IEEE. 2013, pp. 673–680.

[107] James Tompkin et al. “Towards Moment Imagery: Automatic Cinemagraphs”. In:
Visual Media Production, Conference for 0 (2011), pp. 87–93. doi: http://doi.iee
ecomputersociety.org/10.1109/CVMP.2011.16.

[108] Ba Tu Truong and Svetha Venkatesh. “Video abstraction: A systematic review and
classification”. In: ACM Trans. Multimedia Comput. Commun. Appl. 3.1 (Feb. 2007).
issn: 1551-6857. doi: 10.1145/1198302.1198305. url: http://doi.acm.org/10.1
145/1198302.1198305.

[109] Ashok Veeraraghavan et al. “Dappled photography: Mask enhanced cameras for
heterodyned light fields and coded aperture refocusing”. In: ACM Transactions on
Graphics 26.3 (2007), p. 69.

[110] Andreas Velten et al. “Femto-photography: Capturing and visualizing the propagation
of light”. In: ACM Transactions on Graphics (TOG) 32.4 (2013), p. 44.

[111] Andreas Velten et al. “Recovering three-dimensional shape around a corner using
ultrafast time-of-flight imaging”. In: Nature Communications 3 (2012), p. 745.

[112] Neal Wadhwa et al. “Phase-Based Video Motion Processing”. In: ACM Trans. Graph.
(Proceedings SIGGRAPH 2013) 32.4 (2013).

[113] Yu-Shuen Wang et al. “Spatially and Temporally Optimized Video Stabilization”.
In: IEEE Transactions on Visualization and Computer Graphics 19.8 (Aug. 2013),
pp. 1354–1361. issn: 1077-2626.

[114] Bennett Wilburn et al. “High performance imaging using large camera arrays”. In:
ACM Transactions on Graphics (TOG). Vol. 24. 3. ACM. 2005, pp. 765–776.

[115] Hao-Yu Wu et al. “Eulerian Video Magnification for Revealing Subtle Changes in the
World”. In: ACM Trans. Graph. (Proceedings SIGGRAPH 2012) 31.4 (2012).

BIBLIOGRAPHY 92

[116] Mei-Chen Yeh and Po-Yi Li. “A tool for automatic cinemagraphs”. In: Proceedings of
the 20th ACM international conference on Multimedia. MM ’12. Nara, Japan, 2012,
pp. 1259–1260. isbn: 978-1-4503-1089-5.

